IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Bayesian semiparametric GARCH models

  • Xibin Zhang

    ()

  • Maxwell L. King

    ()

This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density has the form of a kernel density estimator of the errors with its bandwidth being the standard deviation. The proposed investigation is motivated by the lack of robustness in GARCH models with any parametric assumption of the error density for the purpose of error-density based inference such as value-at-risk (VaR) estimation. The contribution of the paper is to construct the likelihood and posterior of model and bandwidth parameters under the proposed mixture error density, and to forecast the one-step out-of-sample density of asset returns. The resulting VaR measure therefore would be distribution-free. Applying the semiparametric GARCH(1,1) model to daily stock-index returns in eight stock markets, we find that this semiparametric GARCH model is favoured against the GARCH(1,1) model with Student t errors for five indices, and that the GARCH model underestimates VaR compared to its semiparametric counterpart. We also investigate the use and benefit of localized bandwidths in the proposed mixture density of the errors.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2011/wp24-11.pdf
Download Restriction: no

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 24/11.

as
in new window

Length: 38 pages
Date of creation: 03 Nov 2011
Date of revision:
Handle: RePEc:msh:ebswps:2011-24
Contact details of provider: Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61-3-9905-2489
Fax: +61-3-9905-5474
Web page: http://www.buseco.monash.edu.au/depts/ebs/
Email:


More information through EDIRC

Order Information: Web: http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/ Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Mark J Jensen & John M Maheu, 2012. "Bayesian semiparametric multivariate GARCH modeling," Working Papers tecipa-458, University of Toronto, Department of Economics.
  2. Kanti V. Mardia & John T. Kent & Gareth Hughes & Charles C. Taylor, 2009. "Maximum likelihood estimation using composite likelihoods for closed exponential families," Biometrika, Biometrika Trust, vol. 96(4), pages 975-982.
  3. Drost, F.C. & Klaassen, C.A.J., 1996. "Efficient Estimation in Semiparametric GARCH Models," Discussion Paper 1996-38, Tilburg University, Center for Economic Research.
  4. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages C23-C46.
  5. John Geweke, 1998. "Using simulation methods for Bayesian econometric models: inference, development, and communication," Staff Report 249, Federal Reserve Bank of Minneapolis.
  6. Oliver Linton, 1993. "Adaptive Estimation in ARCH Models," Cowles Foundation Discussion Papers 1054, Cowles Foundation for Research in Economics, Yale University.
  7. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  8. Sangjoon Kim, Neil Shephard & Siddhartha Chib, . "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
  9. Xibin Zhang & Maxwell L. King, 2004. "Box-Cox Stochastic Volatility Models with Heavy-Tails and Correlated Errors," Monash Econometrics and Business Statistics Working Papers 26/04, Monash University, Department of Econometrics and Business Statistics.
  10. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(01), pages 107-131, April.
  11. Vrontos, I D & Dellaportas, P & Politis, D N, 2000. "Full Bayesian Inference for GARCH and EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 187-98, April.
  12. Carlo Grillenzoni, 2009. "Kernel Likelihood Inference for Time Series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 127-140.
  13. W. E. Griffiths, 1999. "Estimating consumer surplus comments on "using simulation methods for bayesian econometric models: inference development and communication"," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 75-87.
  14. Singleton, J. Clay & Wingender, John, 1986. "Skewness Persistence in Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(03), pages 335-341, September.
  15. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-59, October.
  16. Ao Yuan & Jan G. De Gooijer, 2007. "Semiparametric Regression with Kernel Error Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869.
  17. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
  18. G. M. Martin & C. S. Forbes, 1999. "Using simulation methods for bayesian econometric models: inference, development and communication: some comments," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 113-118.
  19. Nakatsuma, Teruo, 2000. "Bayesian analysis of ARMA-GARCH models: A Markov chain sampling approach," Journal of Econometrics, Elsevier, vol. 95(1), pages 57-69, March.
  20. Badrinath, S G & Chatterjee, Sangit, 1988. "On Measuring Skewness and Elongation in Common Stock Return Distributions: The Case of the Market Index," The Journal of Business, University of Chicago Press, vol. 61(4), pages 451-72, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2011-24. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Grose)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.