IDEAS home Printed from https://ideas.repec.org/a/kap/fmktpm/v20y2006i3p243-264.html
   My bibliography  Save this article

Uncertainty in Value-at-risk Estimates under Parametric and Non-parametric Modeling

Author

Listed:
  • Wolfgang Aussenegg

    ()

  • Tatiana Miazhynskaia

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • Wolfgang Aussenegg & Tatiana Miazhynskaia, 2006. "Uncertainty in Value-at-risk Estimates under Parametric and Non-parametric Modeling," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 243-264, September.
  • Handle: RePEc:kap:fmktpm:v:20:y:2006:i:3:p:243-264
    DOI: 10.1007/s11408-006-0020-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11408-006-0020-8
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 0075, European Central Bank.
    2. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
    3. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    4. David Rey, 2005. "Market Timing And Model Uncertainty: An Exploratory Study For The Swiss Stock Market," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 19(3), pages 239-260, October.
    5. Vrontos, I D & Dellaportas, P & Politis, D N, 2000. "Full Bayesian Inference for GARCH and EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 187-198, April.
    6. Bams, Dennis & Lehnert, Thorsten & Wolff, Christian C.P., 2005. "An evaluation framework for alternative VaR-models," Journal of International Money and Finance, Elsevier, vol. 24(6), pages 944-958, October.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    9. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    10. Tatiana Miazhynskaia & Georg Dorffner, 2006. "A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models," Statistical Papers, Springer, vol. 47(4), pages 525-549, October.
    11. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    12. Nakatsuma, Teruo, 2000. "Bayesian analysis of ARMA-GARCH models: A Markov chain sampling approach," Journal of Econometrics, Elsevier, vol. 95(1), pages 57-69, March.
    13. Chris Brooks & Gita Persand, 2000. "Value at Risk and Market Crashes," ICMA Centre Discussion Papers in Finance icma-dp2000-01, Henley Business School, Reading University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    2. Jie Zhu, 2009. "Pricing volatility of stock returns with volatile and persistent components," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(3), pages 243-269, September.

    More about this item

    Keywords

    Value-at-risk; Bayesian analysis; GARCH; Historical simulation; Bootstrap resampling; C11; C50; G10;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:fmktpm:v:20:y:2006:i:3:p:243-264. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.