IDEAS home Printed from https://ideas.repec.org/a/kap/fmktpm/v19y2005i3p239-260.html
   My bibliography  Save this article

Market Timing And Model Uncertainty: An Exploratory Study For The Swiss Stock Market

Author

Listed:
  • David Rey

    ()

Abstract

We use statistical model selection criteria and Avramov's (2002) Bayesian model averaging approach to analyze the sample evidence of stock market predictability in the presence of model uncertainty. The empirical analysis for the Swiss stock market is based on a number of predictive variables found important in previous studies of return predictability. We find that it is difficult to discard any predictive variable as completely worthless, but that the posterior probabilities of the individual forecasting models as well as the cumulative posterior probabilities of the predictive variables are time-varying. Moreover, the estimates of the posterior probabilities are not robust to whether the predictive variables are stochastically detrended or not. The decomposition of the variance of predicted future returns into the components parameter uncertainty, model uncertainty, and the uncertainty attributed to forecast errors indicates that the respective contributions strongly depend on the time period under consideration and the initial values of the predictive variables. In contrast to AVRAMOV (2002), model uncertainty is generally not more important than parameter uncertainty. Finally, we demonstrate the implications of model uncertainty for market timing strategies. In general, our results do not indicate any reliable out-of-sample return predictability. Among the predictive variables, the dividend-price ratio exhibits the worst external validation on average. Again in contrast to AVRAMOV (2002), our analysis suggests that the out-of-sample performance of the Bayesian model averaging approach is not superior to the statistical model selection criteria. Consequently, model averaging does not seem to help improve the performance of the resulting short-term market timing strategies. Copyright Swiss Society for Financial Market Research 2005

Suggested Citation

  • David Rey, 2005. "Market Timing And Model Uncertainty: An Exploratory Study For The Swiss Stock Market," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 19(3), pages 239-260, October.
  • Handle: RePEc:kap:fmktpm:v:19:y:2005:i:3:p:239-260
    DOI: 10.1007/s11408-005-4695-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11408-005-4695-z
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q III, pages 36-58.
    2. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, Oxford University Press, vol. 114(2), pages 433-495.
    3. Owen Lamont, 1998. "Earnings and Expected Returns," Journal of Finance, American Finance Association, vol. 53(5), pages 1563-1587, October.
    4. Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(04), pages 813-841, December.
    5. Malcolm Baker & Jeffrey Wurgler, 2000. "The Equity Share in New Issues and Aggregate Stock Returns," Journal of Finance, American Finance Association, vol. 55(5), pages 2219-2257, October.
    6. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    7. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    8. Ivo Welch & Amit Goyal, 2004. "A Note On 'Predicting Returns With Financial Ratios'," Yale School of Management Working Papers amz2465, Yale School of Management.
    9. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    10. Neely, Christopher J. & Weller, Paul, 2000. "Predictability in International Asset Returns: A Reexamination," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(04), pages 601-620, December.
    11. Phillips, Peter C.B. & Ploberger, Werner, 1994. "Posterior Odds Testing for a Unit Root with Data-Based Model Selection," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 774-808, August.
    12. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    13. Campbell, John Y, 1991. "A Variance Decomposition for Stock Returns," Economic Journal, Royal Economic Society, vol. 101(405), pages 157-179, March.
    14. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    15. Schwert, G. William, 2003. "Anomalies and market efficiency," Handbook of the Economics of Finance,in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 15, pages 939-974 Elsevier.
    16. Bekaert, Geert, 2001. "Editor's foreword to the special issue: "On the predictability of asset returns"," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 451-457, December.
    17. Jacob Boudoukh & Roni Michaely & Matthew Richardson & Michael R. Roberts, 2007. "On the Importance of Measuring Payout Yield: Implications for Empirical Asset Pricing," Journal of Finance, American Finance Association, vol. 62(2), pages 877-915, April.
    18. Walter Torous & Rossen Valkanov & Shu Yan, 2004. "On Predicting Stock Returns with Nearly Integrated Explanatory Variables," The Journal of Business, University of Chicago Press, vol. 77(4), pages 937-966, October.
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1414, August.
    21. Kandel, Shmuel & Stambaugh, Robert F, 1996. " On the Predictability of Stock Returns: An Asset-Allocation Perspective," Journal of Finance, American Finance Association, vol. 51(2), pages 385-424, June.
    22. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942.
    23. Ferson, Wayne E & Harvey, Campbell R, 1991. "The Variation of Economic Risk Premiums," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 385-415, April.
    24. Brennan, Michael J. & Schwartz, Eduardo S. & Lagnado, Ronald, 1997. "Strategic asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1377-1403, June.
    25. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    26. Yihong Xia, 2001. "Learning about Predictability: The Effects of Parameter Uncertainty on Dynamic Asset Allocation," Journal of Finance, American Finance Association, vol. 56(1), pages 205-246, February.
    27. Charles M. C. Lee & James Myers & Bhaskaran Swaminathan, 1999. "What is the Intrinsic Value of the Dow?," Journal of Finance, American Finance Association, vol. 54(5), pages 1693-1741, October.
    28. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-428.
    29. Pontiff, Jeffrey & Schall, Lawrence D., 1998. "Book-to-market ratios as predictors of market returns," Journal of Financial Economics, Elsevier, vol. 49(2), pages 141-160, August.
    30. Foster, F Douglas & Smith, Tom & Whaley, Robert E, 1997. " Assessing Goodness-of-Fit of Asset Pricing Models: The Distribution of the Maximal R-Squared," Journal of Finance, American Finance Association, vol. 52(2), pages 591-607, June.
    31. Chen, Nai-Fu, 1991. " Financial Investment Opportunities and the Macroeconomy," Journal of Finance, American Finance Association, vol. 46(2), pages 529-554, June.
    32. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    33. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
    34. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    35. Amit Goyal & Pedro Santa-Clara, 2003. "Idiosyncratic Risk Matters!," Journal of Finance, American Finance Association, vol. 58(3), pages 975-1008, June.
    36. Fama, Eugene F, 1991. " Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    37. Ferson, Wayne E & Harvey, Campbell R, 1993. "The Risk and Predictability of International Equity Returns," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 527-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rambaccussing, Dooruj, 2010. "A real-time trading rule," MPRA Paper 27148, University Library of Munich, Germany.
    2. Wolfgang Aussenegg & Tatiana Miazhynskaia, 2006. "Uncertainty in Value-at-risk Estimates under Parametric and Non-parametric Modeling," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 243-264, September.
    3. Rambaccussing, Dooruj, 2009. "Exploiting price misalignements," MPRA Paper 27147, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:fmktpm:v:19:y:2005:i:3:p:239-260. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.