IDEAS home Printed from https://ideas.repec.org/a/cup/jfinqa/v39y2004i04p813-841_00.html

Predictive Regressions: A Reduced-Bias Estimation Method

Author

Listed:
  • Amihud, Yakov
  • Hurvich, Clifford M.

Abstract

Standard predictive regressions produce biased coefficient estimates in small samples when the regressors are Gaussian first-order autoregressive with errors that are correlated with the error series of the dependent variable. See Stambaugh (1999) for the single regressor model. This paper proposes a direct and convenient method to obtain reduced-bias estimators for single and multiple regressor models by employing an augmented regression, adding a proxy for the errors in the autoregressive model. We derive bias expressions for both the ordinary least-squares and our reduced-bias estimated coefficients. For the standard errors of the estimated predictive coefficients, we develop a heuristic estimator that performs well in simulations, for both the single predictor model and an important specification of the multiple predictor model. The effectiveness of our method is demonstrated by simulations and empirical estimates of common predictive models in finance. Our empirical results show that some of the predictive variables that were significant under ordinary least squares become insignificant under our estimation procedure.

Suggested Citation

  • Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 813-841, December.
  • Handle: RePEc:cup:jfinqa:v:39:y:2004:i:04:p:813-841_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0022109000003227/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:jfinqa:v:39:y:2004:i:04:p:813-841_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/jfq .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.