IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Properties and estimation of asymmetric exponential power distribution

  • Zhu, Dongming
  • Zinde-Walsh, Victoria

The new distribution class, Asymmetric Exponential Power Distribution (AEPD), proposed in this paper generalizes the class of Skewed Exponential Power Distributions (SEPD) in a way that in addition to skewness introduces different decay rates of density in the left and right tails. Our parametrization provides an interpretable role for each parameter. We derive moments and moment-based measures: skewness, kurtosis, expected shortfall. It is demonstrated that a maximum entropy property holds for the AEPD distributions. We establish consistency, asymptotic normality and efficiency of the maximum likelihood estimators over a large part of the parameter space by dealing with the problems created by non-smooth likelihood function and derive explicit analytical expressions of the asymptotic covariance matrix; where the results apply to the SEPD class they enlarge on the current literature. Also we give a convenient stochastic representation of the distribution; our Monte Carlo study illustrates the theoretical results. We also provide some empirical evidence for the usefulness of employing AEPD errors in GARCH type models for predicting downside market risk of financial assets.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6VC0-4TP49S8-1/2/295cc9e3c8263fac84e01601efe4479e
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 148 (2009)
Issue (Month): 1 (January)
Pages: 86-99

as
in new window

Handle: RePEc:eee:econom:v:148:y:2009:i:1:p:86-99
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  2. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
  3. Bickel, David R., 2002. "Robust estimators of the mode and skewness of continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 153-163, April.
  4. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
  5. Ivana Komunjer, 2007. "Asymmetric power distribution: Theory and applications to risk measurement," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 891-921.
  6. DiCiccio T.J. & Monti A.C., 2004. "Inferential Aspects of the Skew Exponential Power Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 439-450, January.
  7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  8. Mittnik, Stefan & Paolella, Marc S., 2003. "Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions," CFS Working Paper Series 2003/04, Center for Financial Studies (CFS).
  9. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  10. Hsieh, David A, 1989. "Modeling Heteroscedasticity in Daily Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 307-17, July.
  11. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-78, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:148:y:2009:i:1:p:86-99. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.