IDEAS home Printed from https://ideas.repec.org/a/jae/japmet/v22y2007i5p891-921.html
   My bibliography  Save this article

Asymmetric power distribution: Theory and applications to risk measurement

Author

Listed:
  • Ivana Komunjer

    (Department of Economics, University of California, San Diego, California, USA)

Abstract

Theoretical literature in finance has shown that the risk of financial time series can be well quantified by their expected shortfall, also known as the tail value-at-risk. In this paper, I construct a parametric estimator for the expected shortfall based on a flexible family of densities, called the asymmetric power distribution (APD). The APD family extends the generalized power distribution to cases where the data exhibits asymmetry. The first contribution of the paper is to provide a detailed description of the properties of an APD random variable, such as its quantiles and expected shortfall. The second contribution of the paper is to derive the asymptotic distribution of the APD maximum likelihood estimator (MLE) and construct a consistent estimator for its asymptotic covariance matrix. The latter is based on the APD score whose analytic expression is also provided. A small Monte Carlo experiment examines the small sample properties of the MLE and the empirical coverage of its confidence intervals. An empirical application to four daily financial market series reveals that returns tend to be asymmetric, with innovations which cannot be modeled by either Laplace (double-exponential) or Gaussian distribution, even if we allow the latter to be asymmetric. In an out-of-sample exercise, I compare the performances of the expected shortfall forecasts based on the APD-GARCH, Skew-t-GARCH and GPD-EGARCH models. While the GPD-EGARCH 1% expected shortfall forecasts seem to outperform the competitors, all three models perform equally well at forecasting the 5% and 10% expected shortfall. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • Ivana Komunjer, 2007. "Asymmetric power distribution: Theory and applications to risk measurement," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 891-921.
  • Handle: RePEc:jae:japmet:v:22:y:2007:i:5:p:891-921
    DOI: 10.1002/jae.961
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/jae.961
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: http://qed.econ.queensu.ca:80/jae/2007-v22.5/
    File Function: Supporting data files and programs
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    2. M. S. Feldstein, 1969. "Mean-Variance Analysis in the Theory of Liquidity Preference and Portfolio Selection," Review of Economic Studies, Oxford University Press, vol. 36(1), pages 5-12.
    3. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    4. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
    5. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
    6. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," Review of Economic Studies, Oxford University Press, vol. 36(3), pages 335-346.
    7. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    8. Andrews, Donald W.K., 1986. "Empirical process methods in econometrics," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 37, pages 2247-2294 Elsevier.
    9. Olivier SCAILLET, 2004. "Nonparametric Estimation of Conditional Expected Shortfall," FAME Research Paper Series rp112, International Center for Financial Asset Management and Engineering.
    10. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(2), pages 275-309.
    11. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    12. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    2. Jin-Ray Lu & Chiang-Chang Hwang & Yi-Chun Chen & Chu-Ting Wen, 2013. "Including More Information Content to Enhance the Value at Risk Estimation for Real Estate Investment Trusts," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 4(3), pages 25-34, July.
    3. Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.
    4. Douch, Mohamed & Farooq, Omar & Bouaddi, Mohammed, 2015. "Stock price synchronicity and tails of return distribution," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 1-11.
    5. Yu, Dalei & Bai, Peng & Ding, Chang, 2015. "Adjusted quasi-maximum likelihood estimator for mixed regressive, spatial autoregressive model and its small sample bias," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 116-135.
    6. Mendoza-Velázquez, Alfonso & Galvanovskis, Evalds, 2009. "Introducing the GED-Copula with an application to Financial Contagion in Latin America," MPRA Paper 46669, University Library of Munich, Germany, revised 01 Feb 2010.
    7. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    8. Rombouts Jeroen V. K. & Bouaddi Mohammed, 2009. "Mixed Exponential Power Asymmetric Conditional Heteroskedasticity," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-32, May.
    9. Huber, Peter & Oberhofer, Harald & Pfaffermayr, Michael, 2017. "Who creates jobs? Econometric modeling and evidence for Austrian firm level data," European Economic Review, Elsevier, vol. 91(C), pages 57-71.
    10. repec:eee:ecmode:v:68:y:2018:i:c:p:611-621 is not listed on IDEAS
    11. J. Miguel Marin & Genaro Sucarrat, 2015. "Financial density selection," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1195-1213, November.
    12. Yi-Ting Chen, 2016. "Testing for Granger Causality in Moments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(2), pages 265-288, April.
    13. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    14. Mendoza, Alfonso. & Galvanovskis, Evalds., 2014. "La cópula GED bivariada. Una aplicación en entornos de crisis," El Trimestre Económico, Fondo de Cultura Económica, vol. 0(323), pages .721-746, julio-sep.
    15. Yong Bao & Aman Ullah, 2009. "Expectation of Quadratic Forms in Normal and Nonnormal Variables with Econometric Applications," Working Papers 200907, University of California at Riverside, Department of Economics, revised Jun 2009.
    16. Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
    17. Fischer, Matthias, 2012. "A skew and leptokurtic distribution with polynomial tails and characterizing functions in closed form," FAU Discussion Papers in Economics 03/2012, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    18. Bera Anil K. & Galvao Antonio F. & Montes-Rojas Gabriel V. & Park Sung Y., 2016. "Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression," Journal of Econometric Methods, De Gruyter, vol. 5(1), pages 79-101, January.
    19. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    20. Kaiping Wang, 2014. "Modeling Stock Index Returns using Semi-Parametric Approach with Multiplicative Adjustment," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 65-75, December.
    21. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute for the Study of Labor (IZA).
    22. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.

    More about this item

    JEL classification:

    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:22:y:2007:i:5:p:891-921. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.