A new model for forecasting VaR and ES using intraday returns aggregation
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2932
Download full text from publisher
References listed on IDEAS
- Giot, Pierre & Laurent, Sebastien, 2004.
"Modelling daily Value-at-Risk using realized volatility and ARCH type models,"
Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
- Giot, P. & Laurent, S.F.J.A., 2001. "Modelling daily value-at-risk using realized volatility and arch type models," Research Memorandum 026, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- GIOT, Pierre & LAURENT, Sébastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," LIDAM Reprints CORE 1708, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
- Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009.
"Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange,"
Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
- Georges Dionne & Pierre Duchesne & Maria Pacurar, 2005. "Intraday Value at Risk (IVaR) Using Tick-by-Tick Data with Application to the Toronto Stock Exchange," Cahiers de recherche 0533, CIRPEE.
- Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2005. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Working Papers 05-9, HEC Montreal, Canada Research Chair in Risk Management.
- Philippe Artzner, 1999. "Application of Coherent Risk Measures to Capital Requirements in Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 11-25.
- Peter Reinhard Hansen & Zhuo Huang, 2016.
"Exponential GARCH Modeling With Realized Measures of Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 269-287, April.
- Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," Economics Working Papers ECO2012/26, European University Institute.
- Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," CREATES Research Papers 2012-44, Department of Economics and Business Economics, Aarhus University.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Gao, Chun-Ting & Zhou, Xiao-Hua, 2016. "Forecasting VaR and ES using dynamic conditional score models and skew Student distribution," Economic Modelling, Elsevier, vol. 53(C), pages 216-223.
- Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
- Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
- Wu, Xinyu & Xia, Michelle & Zhang, Huanming, 2020. "Forecasting VaR using realized EGARCH model with skewness and kurtosis," Finance Research Letters, Elsevier, vol. 32(C).
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
- Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
- Pierre Giot, 2005.
"Market risk models for intraday data,"
The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 309-324.
- GIOT, Pierre, 2005. "Market risk models for intraday data," LIDAM Reprints CORE 1850, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
- McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
- De Lira Salvatierra, Irving & Patton, Andrew J., 2015.
"Dynamic copula models and high frequency data,"
Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
- Irving Arturo De Lira Salvatierra & Andrew J. Patton, 2013. "Dynamic Copula Models and High Frequency Data," Working Papers 13-28, Duke University, Department of Economics.
- Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
- Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1.
- Song, Shijia & Tian, Fei & Li, Handong, 2021. "An intraday-return-based Value-at-Risk model driven by dynamic conditional score with censored generalized Pareto distribution," Journal of Asian Economics, Elsevier, vol. 74(C).
- Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
- Harvey, Andrew & Sucarrat, Genaro, 2014.
"EGARCH models with fat tails, skewness and leverage,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
- Harvey, A. & Sucarrat, G., 2012. "EGARCH models with fat tails, skewness and leverage," Cambridge Working Papers in Economics 1236, Faculty of Economics, University of Cambridge.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
- Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019.
"Do High-frequency-based Measures Improve Conditional Covariance Forecasts?,"
Post-Print
hal-03331122, HAL.
- Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Zhimin Wu & Guanghui Cai, 2024. "Can intraday data improve the joint estimation and prediction of risk measures? Evidence from a variety of realized measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1956-1974, September.
- Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
- Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
- Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
- Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
- Lazar, Emese & Xue, Xiaohan, 2020. "Forecasting risk measures using intraday data in a generalized autoregressive score framework," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1057-1072.
- Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016.
"Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-921, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2015. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-975, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-949, CIRJE, Faculty of Economics, University of Tokyo.
- Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
- Degiannakis, Stavros & Xekalaki, Evdokia, 2007. "Assessing the Performance of a Prediction Error Criterion Model Selection Algorithm in the Context of ARCH Models," MPRA Paper 96324, University Library of Munich, Germany.
- Mike So & Rui Xu, 2013. "Forecasting Intraday Volatility and Value-at-Risk with High-Frequency Data," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(1), pages 83-111, March.
- Karmakar, Madhusudan & Paul, Samit, 2016. "Intraday risk management in International stock markets: A conditional EVT approach," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 34-55.
- Chun Liu & John M. Maheu, 2008.
"Are There Structural Breaks in Realized Volatility?,"
Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
- Chun Liu & John M Maheu, 2007. "Are there Structural Breaks in Realized Volatility?," Working Papers tecipa-304, University of Toronto, Department of Economics.
- Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016.
"Modeling and forecasting exchange rate volatility in time-frequency domain,"
European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
- Jozef Barunik & Tomas Krehlik & Lukas Vacha, 2012. "Modeling and forecasting exchange rate volatility in time-frequency domain," Papers 1204.1452, arXiv.org, revised Feb 2015.
- Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," FinMaP-Working Papers 55, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003.
"Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility,"
PIER Working Paper Archive
03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
- Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
- Giot, Pierre & Laurent, Sebastien, 2004.
"Modelling daily Value-at-Risk using realized volatility and ARCH type models,"
Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
- Giot, P. & Laurent, S.F.J.A., 2001. "Modelling daily value-at-risk using realized volatility and arch type models," Research Memorandum 026, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- GIOT, Pierre & LAURENT, Sébastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," LIDAM Reprints CORE 1708, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
- Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
- Sévi, Benoît, 2014.
"Forecasting the volatility of crude oil futures using intraday data,"
European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Post-Print hal-01463921, HAL.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Working Papers 2014-53, Department of Research, Ipag Business School.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:5:p:1039-1054. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.