IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Selecting and estimating regular vine copulae and application to financial returns

  • Dißmann, J.
  • Brechmann, E.C.
  • Czado, C.
  • Kurowicka, D.
Registered author(s):

    Regular vine distributions which constitute a flexible class of multivariate dependence models are discussed. Since multivariate copulae constructed through pair-copula decompositions were introduced to the statistical community, interest in these models has been growing steadily and they are finding successful applications in various fields. Research so far has however been concentrating on so-called canonical and D-vine copulae, which are more restrictive cases of regular vine copulae. It is shown how to evaluate the density of arbitrary regular vine specifications. This opens the vine copula methodology to the flexible modeling of complex dependencies even in larger dimensions. In this regard, a new automated model selection and estimation technique based on graph theoretical considerations is presented. This comprehensive search strategy is evaluated in a large simulation study and applied to a 16-dimensional financial data set of international equity, fixed income and commodity indices which were observed over the last decade, in particular during the recent financial crisis. The analysis provides economically well interpretable results and interesting insights into the dependence structure among these indices.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312003131
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 59 (2013)
    Issue (Month): C ()
    Pages: 52-69

    as
    in new window

    Handle: RePEc:eee:csdana:v:59:y:2013:i:c:p:52-69
    Contact details of provider: Web page: http://www.elsevier.com/locate/csda

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:59:y:2013:i:c:p:52-69. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.