IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v101y2016icp186-208.html
   My bibliography  Save this article

Structure learning in Bayesian Networks using regular vines

Author

Listed:
  • Hobæk Haff, Ingrid
  • Aas, Kjersti
  • Frigessi, Arnoldo
  • Lacal, Virginia

Abstract

Learning the structure of a Bayesian Network from multidimensional data is an important task in many situations, as it allows understanding conditional (in)dependence relations which in turn can be used for prediction. Current methods mostly assume a multivariate normal or a discrete multinomial model. A new greedy learning algorithm for continuous non-Gaussian variables, where marginal distributions can be arbitrary, as well as the dependency structure, is proposed. It exploits the regular vine approximation of the model, which is a tree-based hierarchical construction with pair-copulae as building blocks. It is shown that the networks obtainable with our algorithm belong to a certain subclass of chordal graphs. Chordal graphs representations are often preferred, as they allow very efficient message passing and information propagation in intervention studies. It is illustrated through several examples and real data applications that the possibility of using non-Gaussian margins and a non-linear dependency structure outweighs the restriction to chordal graphs.

Suggested Citation

  • Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo & Lacal, Virginia, 2016. "Structure learning in Bayesian Networks using regular vines," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 186-208.
  • Handle: RePEc:eee:csdana:v:101:y:2016:i:c:p:186-208
    DOI: 10.1016/j.csda.2016.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316300457
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanea, A.M. & Kurowicka, D. & Cooke, R.M. & Ababei, D.A., 2010. "Mining and visualising ordinal data with non-parametric continuous BBNs," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 668-687, March.
    2. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo, 2010. "On the simplified pair-copula construction -- Simply useful or too simplistic?," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1296-1310, May.
    3. Anastasios Panagiotelis & Claudia Czado & Harry Joe, 2012. "Pair Copula Constructions for Multivariate Discrete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1063-1072, September.
    4. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(4), pages 437-480, Fall.
    5. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    6. Martinelli, Gabriele & Eidsvik, Jo & Hauge, Ragnar, 2013. "Dynamic decision making for graphical models applied to oil exploration," European Journal of Operational Research, Elsevier, vol. 230(3), pages 688-702.
    7. Kalisch, Markus & Mächler, Martin & Colombo, Diego & Maathuis, Marloes H. & Bühlmann, Peter, 2012. "Causal Inference Using Graphical Models with the R Package pcalg," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i11).
    8. Stöber, Jakob & Hong, Hyokyoung Grace & Czado, Claudia & Ghosh, Pulak, 2015. "Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 28-39.
    9. Aleksey Min & Claudia Czado, 2010. "Bayesian Inference for Multivariate Copulas Using Pair-Copula Constructions," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 511-546, Fall.
    10. Smith, Michael & Min, Aleksey & Almeida, Carlos & Czado, Claudia, 2010. "Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1467-1479.
    11. Hoaek Haff, Ingrid & Segers, Johan, 2015. "Nonparametric estimation of pair-copula constructions with the empirical pair-copula," LIDAM Reprints ISBA 2015003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    13. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    14. Kjersti Aas & Daniel Berg, 2009. "Models for construction of multivariate dependence - a comparison study," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 639-659.
    15. Brechmann, Eike C. & Joe, Harry, 2015. "Truncation of vine copulas using fit indices," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 19-33.
    16. Genest, Christian & Gerber, Hans U. & Goovaerts, Marc J. & Laeven, Roger J.A., 2009. "Editorial to the special issue on modeling and measurement of multivariate risk in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 143-145, April.
    17. Scutari, Marco, 2010. "Learning Bayesian Networks with the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i03).
    18. Hobæk Haff, Ingrid & Segers, Johan, 2015. "Nonparametric estimation of pair-copula constructions with the empirical pair-copula," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 1-13.
    19. HEINEN, Andréas & VALDESOGO, Alfonso, 2009. "Asymmetric CAPM dependence for large dimensions: the Canonical Vine Autoregressive Model," LIDAM Discussion Papers CORE 2009069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quanrui Song & Jianxu Liu & Songsak Sriboonchitta, 2019. "Risk Measurement of Stock Markets in BRICS, G7, and G20: Vine Copulas versus Factor Copulas," Mathematics, MDPI, vol. 7(3), pages 1-16, March.
    2. KIM, Junyung & ZHAO, Xingang & SHAH, Asad Ullah Amin & KANG, Hyun Gook, 2021. "System risk quantification and decision making support using functional modeling and dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Müller, Dominik & Czado, Claudia, 2019. "Dependence modelling in ultra high dimensions with vine copulas and the Graphical Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 211-232.
    4. Aas Kjersti & Nagler Thomas & Jullum Martin & Løland Anders, 2021. "Explaining predictive models using Shapley values and non-parametric vine copulas," Dependence Modeling, De Gruyter, vol. 9(1), pages 62-81, January.
    5. Zhu, Kailun & Kurowicka, Dorota, 2022. "Regular vines with strongly chordal pattern of (conditional) independence," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    6. Pierpaolo D’Urso & Vincenzina Vitale, 2021. "Modeling Local BES Indicators by Copula-Based Bayesian Networks," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(3), pages 823-847, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    2. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    3. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    4. David E. Allen & Mohammad A. Ashraf & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2013. "Financial dependence analysis: applications of vine copulas," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 403-435, November.
    5. Weiß, Gregor N.F. & Scheffer, Marcus, 2015. "Mixture pair-copula-constructions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 175-191.
    6. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    7. David E. Allen & Michael McAleer & Abhay K. Singh, 2017. "Risk Measurement and Risk Modelling Using Applications of Vine Copulas," Sustainability, MDPI, vol. 9(10), pages 1-34, September.
    8. Min, Aleksey & Czado, Claudia, 2014. "SCOMDY models based on pair-copula constructions with application to exchange rates," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 523-535.
    9. Cyprian Omari & Peter Mwita & Anthony Waititu, 2019. "Conditional Dependence Modelling with Regular Vine Copulas," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(1), pages 1-5.
    10. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
    11. Brechmann Eike Christain & Czado Claudia, 2013. "Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 307-342, December.
    12. Stöber, Jakob & Czado, Claudia, 2014. "Regime switches in the dependence structure of multidimensional financial data," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 672-686.
    13. Brechmann, Eike Christian & Schepsmeier, Ulf, 2013. "Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i03).
    14. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    15. Genest Christian & Scherer Matthias, 2019. "The world of vines: An interview with Claudia Czado," Dependence Modeling, De Gruyter, vol. 7(1), pages 169-180, January.
    16. Panagiotelis, Anastasios & Czado, Claudia & Joe, Harry & Stöber, Jakob, 2017. "Model selection for discrete regular vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 138-152.
    17. Jose Arreola Hernandez & Shawkat Hammoudeh & Duc Khuong Nguyen & Mazin A. M. Al Janabi & Juan Carlos Reboredo, 2017. "Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2409-2427, May.
    18. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    19. Kim, Daeyoung & Kim, Jong-Min & Liao, Shu-Min & Jung, Yoon-Sung, 2013. "Mixture of D-vine copulas for modeling dependence," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 1-19.
    20. Hobæk Haff, Ingrid & Segers, Johan, 2015. "Nonparametric estimation of pair-copula constructions with the empirical pair-copula," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:101:y:2016:i:c:p:186-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.