IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2009069.html
   My bibliography  Save this paper

Asymmetric CAPM dependence for large dimensions: the Canonical Vine Autoregressive Model

Author

Listed:
  • HEINEN, Andréas

    (Departamento de Estadistica, Universidad Carlos III de Madrid, Spain)

  • VALDESOGO, Alfonso

    (CREA, University of Luxembourg, Luxembourg)

Abstract

We propose a new dynamic model for volatility and dependence in high dimensions, that allows for departures from the normal distribution, both in the marginals and in the dependence. The dependence is modeled with a dynamic canonical vine copula, which can be decomposed into a cascade of bivariate conditional copulas. Due to this decomposition, the model does not suffer from the curse of dimensionality. The canonical vine autoregressive (CAVA) captures asymmetries in the dependence structure. The model is applied to 95 S&P500 stocks. For the marginal distributions, we use non-Gaussian GARCH models, that are designed to capture skewness and kurtosis. By conditioning on the market index and on sector indexes, the dependence structure is much simplified and the model can be considered as a non-linear version of the CAPM or of a market model with sector effects. The model is shown to deliver good forecasts of Value-at-Risk.

Suggested Citation

  • HEINEN, Andréas & VALDESOGO, Alfonso, 2009. "Asymmetric CAPM dependence for large dimensions: the Canonical Vine Autoregressive Model," LIDAM Discussion Papers CORE 2009069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2009069
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp2009.html
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    asymmetric dependence; high dimension; multivariate copula; multivariate GARCH; Value-at-Risk;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2009069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.