IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v9y2009i7p839-854.html
   My bibliography  Save this article

An empirical analysis of multivariate copula models

Author

Listed:
  • Matthias Fischer
  • Christian Kock
  • Stephan Schluter
  • Florian Weigert

Abstract

Since the pioneering work of Embrechts and co-authors in 1999, copula models have enjoyed steadily increasing popularity in finance. Whereas copulas are well studied in the bivariate case, the higher-dimensional case still offers several open issues and it is far from clear how to construct copulas which sufficiently capture the characteristics of financial returns. For this reason, elliptical copulas (i.e. Gaussian and Student-t copula) still dominate both empirical and practical applications. On the other hand, several attractive construction schemes have appeared in the recent literature promising flexible but still manageable dependence models. The aim of this work is to empirically investigate whether these models are really capable of outperforming its benchmark, i.e. the Student-t copula and, in addition, to compare the fit of these different copula classes among themselves.

Suggested Citation

  • Matthias Fischer & Christian Kock & Stephan Schluter & Florian Weigert, 2009. "An empirical analysis of multivariate copula models," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 839-854.
  • Handle: RePEc:taf:quantf:v:9:y:2009:i:7:p:839-854
    DOI: 10.1080/14697680802595650
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680802595650
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680802595650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Fan, Yanqin & Patton, Andrew J., 2004. "Simple tests for models of dependence between multiple financial time series, with applications to U.S. equity returns and exchange rates," LSE Research Online Documents on Economics 24681, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Pierre-André Maugis, 2010. "An Econometric Study of Vine Copulas," Documents de travail du Centre d'Economie de la Sorbonne 10040, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    3. Oriol Roch Casellas & Antonio Alegre Escolano, 2005. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Working Papers in Economics 143, Universitat de Barcelona. Espai de Recerca en Economia.
    4. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    5. Gonzalo, J. & Olmo, J., 2007. "The impact of heavy tails and comovements in downside-risk diversification," Working Papers 07/02, Department of Economics, City University London.
    6. Roch, Oriol & Alegre, Antonio, 2006. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1312-1329, November.
    7. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    8. Carluccio Bianchi & Maria Elena De Giuli & Dean Fantazzini & Mario Maggi, 2011. "Small sample properties of copula-GARCH modelling: a Monte Carlo study," Applied Financial Economics, Taylor & Francis Journals, vol. 21(21), pages 1587-1597.
    9. Long, Xiangdong & Su, Liangjun & Ullah, Aman, 2011. "Estimation and Forecasting of Dynamic Conditional Covariance: A Semiparametric Multivariate Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 109-125.
    10. Li, Lihui & Wen, Tao, 2013. "Estimation of C-MGARCH models based on the MBP method," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 665-673.
    11. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    12. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
    13. Pierre-André Maugis & Dominique Guegan, 2010. "Note on new prospects on vines," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00471362, HAL.
    14. Pierre-André Maugis & Dominique Guegan, 2010. "Note on new prospects on vines," Post-Print halshs-00471362, HAL.
    15. Nikoloulopoulos, Aristidis K. & Karlis, Dimitris, 2008. "Copula model evaluation based on parametric bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3342-3353, March.
    16. Garcia, René & Tsafack, Georges, 2011. "Dependence structure and extreme comovements in international equity and bond markets," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1954-1970, August.
    17. repec:wrk:wrkemf:02 is not listed on IDEAS
    18. repec:hum:wpaper:sfb649dp2010-022 is not listed on IDEAS
    19. Fantazzini, Dean, 2009. "The effects of misspecified marginals and copulas on computing the value at risk: A Monte Carlo study," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2168-2188, April.
    20. Dominique Guegan & Pierre-André Maugis, 2010. "An Econometric Study of Vine Copulas," Post-Print halshs-00492124, HAL.
    21. Matthias Fischer & Christian Köck, 2007. "Multivariate Copula Models at Work: Dependence Structure of Energie Prices," Energy and Environmental Modeling 2007 24000014, EcoMod.
    22. Luciana Dalla Valle, 2009. "Bayesian Copulae Distributions, with Application to Operational Risk Management," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 95-115, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:9:y:2009:i:7:p:839-854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.