IDEAS home Printed from
   My bibliography  Save this article

Small sample properties of copula-GARCH modelling: a Monte Carlo study


  • Carluccio Bianchi
  • Maria Elena De Giuli
  • Dean Fantazzini
  • Mario Maggi


Copula-GARCH models have been recently proposed in the financial literature as a statistical tool to deal with flexible multivariate distributions. Our extensive simulation studies investigate the small sample properties of these models and examine how misspecification in the marginals may affect the estimation of the dependence function represented by the copula. We show that the use of Normal marginals when the true Data Generating Process (DGP) is leptokurtic or asymmetric, produces negatively biased estimates of the Normal copula correlations. A striking result is that these biases reach their highest value when correlations are strongly negative, and viceversa. This result remains unchanged with both positively skewed and negatively skewed data, while no biases are found if the variables are uncorrelated. Besides, the effect of marginals asymmetry on correlations is smaller than that of leptokurtosis. We finally analyse the performance of these models in terms of numerical convergence and positive definiteness of the estimated copula correlation matrix.

Suggested Citation

  • Carluccio Bianchi & Maria Elena De Giuli & Dean Fantazzini & Mario Maggi, 2011. "Small sample properties of copula-GARCH modelling: a Monte Carlo study," Applied Financial Economics, Taylor & Francis Journals, vol. 21(21), pages 1587-1597.
  • Handle: RePEc:taf:apfiec:v:21:y:2011:i:21:p:1587-1597
    DOI: 10.1080/09603107.2011.587770

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    4. Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
    Full references (including those not matched with items on IDEAS)

    More about this item


    copulas; copula-GARCH models; maximum likelihood; simulation; small sample properties;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:21:y:2011:i:21:p:1587-1597. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.