IDEAS home Printed from https://ideas.repec.org/p/afc/wpaper/09-21.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Testing The Weak Form Efficiency Of The French Etf Market With Lstar-Anlstgarch Approach Using A Semiparametric Estimation

Author

Listed:
  • Claude Diebolt

    (University of Strasbourg, Strasbourg, France)

  • Mohamed Chikhi

    (LAQSEF, University of Ouargla, Algeria)

Abstract

The present research aims to test the weak-form efficiency of the French ETF market through a LSTAR model with ANSTGARCH errors, by using semiparametric maximum likelihood where the innovation distribution is replaced by a nonparametric estimate based on the kernel density function. In this paper, we consider the daily Xtrackers CAC 40 UCITS from 2009 to 2020 for the analysis as it is supposed to capture more information compared to other French stock markets. After application of different statistical tests, we show that the price fluctuations appear as the result of transitory shocks and the predictions provided by the LSTAR-ANLSTGARCH model are better than those of other models for some time horizons. The predictions from this model are also better than those of the random walk model; accordingly, the XCAC 40 price is a not weak form of an efficient market for the entire period because its successive return is nonlinearly dependent and does not generate randomly.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Claude Diebolt & Mohamed Chikhi, 2021. "Testing The Weak Form Efficiency Of The French Etf Market With Lstar-Anlstgarch Approach Using A Semiparametric Estimation," Working Papers 09-21, Association Française de Cliométrie (AFC).
  • Handle: RePEc:afc:wpaper:09-21
    as

    Download full text from publisher

    File URL: https://www.cliometrie.org/images/wp/AFC_WP_09_2021.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robinson, P.M. & Henry, M., 1999. "Long And Short Memory Conditional Heteroskedasticity In Estimating The Memory Parameter Of Levels," Econometric Theory, Cambridge University Press, vol. 15(3), pages 299-336, June.
    2. Andrew W. Lo & Craig A. MacKinlay, "undated". "Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test (Revised: 29-87)," Rodney L. White Center for Financial Research Working Papers 05-87, Wharton School Rodney L. White Center for Financial Research.
    3. Gonzalez-Rivera, Gloria & Drost, Feike C., 1999. "Efficiency comparisons of maximum-likelihood-based estimators in GARCH models," Journal of Econometrics, Elsevier, vol. 93(1), pages 93-111, November.
    4. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    5. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, November.
    6. Eitrheim, Oyvind & Terasvirta, Timo, 1996. "Testing the adequacy of smooth transition autoregressive models," Journal of Econometrics, Elsevier, vol. 74(1), pages 59-75, September.
    7. Öcal Nadir, 2000. "Nonlinear Models for U.K. Macroeconomic Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(3), pages 1-15, October.
    8. Stefan Reitz & Frank Westerhoff, 2007. "Commodity price cycles and heterogeneous speculators: a STAR–GARCH model," Empirical Economics, Springer, vol. 33(2), pages 231-244, September.
    9. Sarantis, Nicholas, 1999. "Modeling non-linearities in real effective exchange rates," Journal of International Money and Finance, Elsevier, vol. 18(1), pages 27-45, January.
    10. Donald W. K. Andrews & Patrik Guggenberger, 2003. "A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter," Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Andrew W. Lo & Craig A. MacKinlay, "undated". "Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test (Revision of 5-87)," Rodney L. White Center for Financial Research Working Papers 29-87, Wharton School Rodney L. White Center for Financial Research.
    13. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    14. Narayan, Paresh Kumar & Liu, Ruipeng & Westerlund, Joakim, 2016. "A GARCH model for testing market efficiency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 121-138.
    15. Catherine Kyrtsou & Michel Terraza, 2003. "Is it Possible to Study Chaotic and ARCH Behaviour Jointly? Application of a Noisy Mackey–Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange Returns Series," Computational Economics, Springer;Society for Computational Economics, vol. 21(3), pages 257-276, June.
    16. Venus Khim-Sen Liew & Ahmad Zubaidi Baharumshahb & Evan Laub, 2004. "Nonlinear Adjustment towards Purchasing Power Parity in ASEAN Exchange Rates," The IUP Journal of Applied Economics, IUP Publications, vol. 0(6), pages 7-18, November.
    17. Medeiros, Marcelo C. & Veiga, Alvaro, 2009. "Modeling Multiple Regimes In Financial Volatility With A Flexible Coefficient Garch(1,1) Model," Econometric Theory, Cambridge University Press, vol. 25(1), pages 117-161, February.
    18. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521586115, November.
    19. Jianing Di & Ashis Gangopadhyay, 2014. "One-step Semiparametric Estimation of the GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 12(2), pages 382-407.
    20. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    21. Estefania Mourelle & Juan Carlos Cuestas & Luis Alberiko Gil‐alana, 2011. "Is There An Asymmetric Behaviour In African Inflation? A Non‐Linear Approach," South African Journal of Economics, Economic Society of South Africa, vol. 79(1), pages 68-90, March.
    22. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207, Decembrie.
    23. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    24. Chan, Felix & Theoharakis, Billy, 2011. "Estimating m-regimes STAR-GARCH model using QMLE with parameter transformation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1385-1396.
    25. Felix Chan & Michael McAleer, 2003. "Estimating smooth transition autoregressive models with GARCH errors in the presence of extreme observations and outliers," Applied Financial Economics, Taylor & Francis Journals, vol. 13(8), pages 581-592.
    26. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    27. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    28. Ouyang, Tinghui & Huang, Heming & He, Yusen & Tang, Zhenhao, 2020. "Chaotic wind power time series prediction via switching data-driven modes," Renewable Energy, Elsevier, vol. 145(C), pages 270-281.
    29. Mohamed Chikhi & Claude Diebolt, 2009. "Transitory exogenous shocks in a non-linear framework: application to the cyclical behaviour of the German aggregate wage earnings," Historical Social Research (Section 'Cliometrics'), Association Française de Cliométrie (AFC), vol. 34(1), pages 354-366.
    30. Franses, Ph.H.B.F. & Neele, J. & van Dijk, D.J.C., 1998. "Forecasting volatility with switching persistence GARCH models," Econometric Institute Research Papers EI 9819, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    31. Murat Midilic, 2016. "Estimation Of Star-Garch Models With Iteratively Weighted Least Squares," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 16/918, Ghent University, Faculty of Economics and Business Administration.
    32. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
    33. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    34. Pavlidis Efthymios G & Paya Ivan & Peel David A, 2010. "Specifying Smooth Transition Regression Models in the Presence of Conditional Heteroskedasticity of Unknown Form," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(3), pages 1-40, May.
    35. Mohamed Chikhi & Ali Bendob, 2018. "Nonparametric NAR-ARCH Modelling of Stock Prices by the Kernel Methodology," Journal of Economics and Financial Analysis, Tripal Publishing House, vol. 2(2), pages 105-120.
    36. Barnett,William A. & Geweke,John & Shell,Karl (ed.), 1989. "Economic Complexity: Chaos, Sunspots, Bubbles, and Nonlinearity," Cambridge Books, Cambridge University Press, number 9780521355636, November.
    37. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    38. Rompotis, Gerasimos G., 2011. "Testing weak-form efficiency of exchange traded funds market," MPRA Paper 36020, University Library of Munich, Germany.
    39. Melike Bildirici & Nilgun Guler Bayazit & Yasemen Ucan, 2020. "Analyzing Crude Oil Prices under the Impact of COVID-19 by Using LSTARGARCHLSTM," Energies, MDPI, vol. 13(11), pages 1-18, June.
    40. Skalin, Joakim & Teräsvirta, Timo, 2002. "Modeling Asymmetries And Moving Equilibria In Unemployment Rates," Macroeconomic Dynamics, Cambridge University Press, vol. 6(2), pages 202-241, April.
    41. Baum, Christopher F. & Barkoulas, John T. & Caglayan, Mustafa, 1999. "Long memory or structural breaks: can either explain nonstationary real exchange rates under the current float?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 9(4), pages 359-376, November.
    42. González-Rivera Gloria, 1998. "Smooth-Transition GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(2), pages 1-20, July.
    43. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    44. Álvaro Escribano & Oscar Jordá, 2001. "Testing nonlinearity: Decision rules for selecting between logistic and exponential STAR models," Spanish Economic Review, Springer;Spanish Economic Association, vol. 3(3), pages 193-209.
    45. Fuzuli Aliyev, 2019. "Testing Market Efficiency with Nonlinear Methods: Evidence from Borsa Istanbul," IJFS, MDPI, vol. 7(2), pages 1-11, June.
    46. Huber, Jurgen & Kirchler, Michael & Sutter, Matthias, 2008. "Is more information always better: Experimental financial markets with cumulative information," Journal of Economic Behavior & Organization, Elsevier, vol. 65(1), pages 86-104, January.
    47. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Chikhi & Claude Diebolt, 2019. "Testing Nonlinearity through a Logistic Smooth Transition AR Model with Logistic Smooth Transition GARCH Errors," Working Papers 03-19, Association Française de Cliométrie (AFC).
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, November.
    3. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    4. Param Silvapulle & Titi Kanti Lestari & Jae Kim, 2004. "Nonlinear Modelling of Purchasing Power Parity in Indonesia," Econometric Society 2004 Australasian Meetings 316, Econometric Society.
    5. Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
    6. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    7. Wang, Rudan & Morley, Bruce & Stamatogiannis, Michalis P., 2019. "Forecasting the exchange rate using nonlinear Taylor rule based models," International Journal of Forecasting, Elsevier, vol. 35(2), pages 429-442.
    8. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, November.
    9. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, November.
    10. Bildirici, Melike & Ersin, Özgür, 2012. "Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models," MPRA Paper 40330, University Library of Munich, Germany, revised May 2012.
    11. David Ubilava, 2012. "Modeling Nonlinearities in the U.S. Soybean‐to‐Corn Price Ratio: A Smooth Transition Autoregression Approach," Agribusiness, John Wiley & Sons, Ltd., vol. 28(1), pages 29-41, January.
    12. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    13. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
    14. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
    15. Milas Costas & Legrenzi Gabriella, 2006. "Non-linear Real Exchange Rate Effects in the UK Labour Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-34, March.
    16. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    17. Mahua Barari & Nityananda Sarkar & Srikanta Kundu & Kushal Banik Chowdhury, 2014. "Forecasting House Prices in the United States with Multiple Structural Breaks," International Econometric Review (IER), Econometric Research Association, vol. 6(1), pages 1-23, April.
    18. Gonzalez-Rivera, Gloria & Drost, Feike C., 1999. "Efficiency comparisons of maximum-likelihood-based estimators in GARCH models," Journal of Econometrics, Elsevier, vol. 93(1), pages 93-111, November.
    19. Öcal Nadir, 2000. "Nonlinear Models for U.K. Macroeconomic Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(3), pages 1-15, October.
    20. Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:afc:wpaper:09-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/afcccea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.