IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2025-61.html
   My bibliography  Save this paper

Linear and nonlinear econometric models against machine learning models: realized volatility prediction

Author

Abstract

This paper fills an important gap in the volatility forecasting literature by comparing a broad suite of machine learning (ML) methods with both linear and nonlinear econometric models using high-frequency realized volatility (RV) data for the S&P 500. We evaluate ARFIMA, HAR, regime-switching HAR models (THAR, STHAR, MSHAR), and ML methods including Extreme Gradient Boosting, deep feed-forward neural networks, and recurrent networks (BRNN, LSTM, LSTM-A, GRU). Using rolling forecasts from 2006 onward, we find that regime-switching models—particularly THAR and STHAR—consistently outperform ML and linear models, especially when predictors are limited. These models also deliver more accurate risk forecasts and higher realized utility. While ML models capture some nonlinear patterns, they offer no consistent advantage over simpler, interpretable alternatives. Our findings highlight the importance of modeling regime changes through transparent econometric tools, especially in real-world applications where predictor availability is sparse and model interpretability is critical for risk management and portfolio allocation.

Suggested Citation

  • Rehim Kılıç, 2025. "Linear and nonlinear econometric models against machine learning models: realized volatility prediction," Finance and Economics Discussion Series 2025-061, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2025-61
    DOI: 10.17016/FEDS.2025.061
    as

    Download full text from publisher

    File URL: https://www.federalreserve.gov/econres/feds/files/2025061pap.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.17016/FEDS.2025.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2025-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.