IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v40y2014icp1-10.html
   My bibliography  Save this article

Modeling and predicting the CBOE market volatility index

Author

Listed:
  • Fernandes, Marcelo
  • Medeiros, Marcelo C.
  • Scharth, Marcel

Abstract

This paper performs a thorough statistical examination of the time-series properties of the daily market volatility index (VIX) from the Chicago Board Options Exchange (CBOE). The motivation lies not only on the widespread consensus that the VIX is a barometer of the overall market sentiment as to what concerns investors’ risk appetite, but also on the fact that there are many trading strategies that rely on the VIX index for hedging and speculative purposes. Preliminary analysis suggests that the VIX index displays long-range dependence. This is well in line with the strong empirical evidence in the literature supporting long memory in both options-implied and realized variances. We thus resort to both parametric and semiparametric heterogeneous autoregressive (HAR) processes for modeling and forecasting purposes. Our main findings are as follows. First, we confirm the evidence in the literature that there is a negative relationship between the VIX index and the S&P 500 index return as well as a positive contemporaneous link with the volume of the S&P 500 index. Second, the term spread has a slightly negative long-run impact in the VIX index, when possible multicollinearity and endogeneity are controlled for. Finally, we cannot reject the linearity of the above relationships, neither in sample nor out of sample. As for the latter, we actually show that it is pretty hard to beat the pure HAR process because of the very persistent nature of the VIX index.

Suggested Citation

  • Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014. "Modeling and predicting the CBOE market volatility index," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
  • Handle: RePEc:eee:jbfina:v:40:y:2014:i:c:p:1-10
    DOI: 10.1016/j.jbankfin.2013.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426613004172
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Chan, Kalok & Fong, Wai-Ming, 2000. "Trade size, order imbalance, and the volatility-volume relation," Journal of Financial Economics, Elsevier, vol. 57(2), pages 247-273, August.
    3. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    4. Jeff Fleming & Barbara Ostdiek & Robert E. Whaley, 1995. "Predicting stock market volatility: A new measure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(3), pages 265-302, May.
    5. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    6. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    7. Federico M. Bandi & Benoit Perron, 2006. "Long Memory and the Relation Between Implied and Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 636-670.
    8. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    9. Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
    10. Adam Clements & Joanne Fuller, 2012. "Forecasting increases in the VIX: A time-varying long volatility hedge for equities," NCER Working Paper Series 88, National Centre for Econometric Research.
    11. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    12. Hu, Michael Y. & Tsoukalas, Christos, 1999. "Combining conditional volatility forecasts using neural networks: an application to the EMS exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 9(4), pages 407-422, November.
    13. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Modelling S&P 100 volatility: The information content of stock returns," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1665-1679, September.
    14. Xu, Xinzhong & Taylor, Stephen J., 1995. "Conditional volatility and the informational efficiency of the PHLX currency options market," Journal of Banking & Finance, Elsevier, vol. 19(5), pages 803-821, August.
    15. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    16. Hentschel, Ludger, 2003. "Errors in Implied Volatility Estimation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(4), pages 779-810, December.
    17. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    18. He, Hua & Wang, Jiang, 1995. "Differential Information and Dynamic Behavior of Stock Trading Volume," Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 919-972.
    19. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    20. Karim Abadir & Gabriel Talmain, 2002. "Aggregation, Persistence and Volatility in a Macro Model," Review of Economic Studies, Oxford University Press, vol. 69(4), pages 749-779.
    21. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    22. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    23. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
    24. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    25. Jorion, Philippe, 1995. "Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
    26. Torben G. Andersen & Oleg Bondarenko, 2007. "Construction and Interpretation of Model-Free Implied Volatility," NBER Working Papers 13449, National Bureau of Economic Research, Inc.
    27. Ralitsa Petkova, 2006. "Do the Fama–French Factors Proxy for Innovations in Predictive Variables?," Journal of Finance, American Finance Association, vol. 61(2), pages 581-612, April.
    28. Lamoureux, Christopher G & Lastrapes, William D, 1994. "Endogenous Trading Volume and Momentum in Stock-Return Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 253-260, April.
    29. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    30. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus & Teyssiere, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," Journal of Econometrics, Elsevier, vol. 112(2), pages 265-294, February.
    31. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    32. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    33. Konstantinidi, Eirini & Skiadopoulos, George & Tzagkaraki, Emilia, 2008. "Can the evolution of implied volatility be forecasted? Evidence from European and US implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2401-2411, November.
    34. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    35. Peter Carr & Roger Lee, 2009. "Volatility Derivatives," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 319-339, November.
    36. Becker, Ralf & Clements, Adam E. & White, Scott I., 2007. "Does implied volatility provide any information beyond that captured in model-based volatility forecasts?," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2535-2549, August.
    37. Eric Hillebrand & Marcelo Medeiros, 2010. "The Benefits of Bagging for Forecast Models of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 571-593.
    38. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    39. Bollerslev, Tim & Zhou, Hao, 2006. "Volatility puzzles: a simple framework for gauging return-volatility regressions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 123-150.
    40. Hamid, Shaikh A. & Iqbal, Zahid, 2004. "Using neural networks for forecasting volatility of S&P 500 Index futures prices," Journal of Business Research, Elsevier, vol. 57(10), pages 1116-1125, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Heterogeneous autoregression; Implied volatility; Neural networks; VIX;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:40:y:2014:i:c:p:1-10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.