IDEAS home Printed from https://ideas.repec.org/p/rio/texdis/548.html
   My bibliography  Save this paper

Modeling and predicting the CBOE market volatility index

Author

Listed:
  • Marcelo Fernandes

    () (Queen Mary, University of London)

  • Marcelo Cunha Medeiros

    () (Department of Economics, PUC-Rio)

  • MArcelo Scharth

    ()

Abstract

This paper performs a thorough statistical examination of the time-series properties of the market volatility index (VIX) from the Chicago Board Options Exchange (CBOE). The motivation lies on the widespread consensus that the VIX is a barometer to the overall market sentiment as to what concerns risk appetite. To assess the statistical behavior of the time series, we run a series of preliminary analyses whose results suggest there is some long-range dependence in the VIX index. This is consistent with the strong empirical evidence in the literature supporting long memory in both options-implied and realized volatilities. We thus resort to linear and nonlinear heterogeneous autoregressive (HAR) processes, including smooth transition and threshold HAR-type models, as well as to smooth transition autoregressive trees (START) for modeling and forecasting purposes. The in-sample results for the HAR-type indicate that they cope with the long-range dependence in the VIX time series as well as the more popular ARFIMA model. In addition, the highly nonlinear START specification also does a god job in controlling for the long memory. The out-of-sample analysis evince that the linear ARMA and ARFIMA models perform very well in the short run and very poorly in the long-run, whereas the START model entails by far the best results for the longer horizon despite of failing at shorter horizons. In contrast, the HAR-type models entail reasonable relative performances in most horizons. Finally, we also show how a simple forecast combination brings about great improvements in terms of predictive ability for most horizons.

Suggested Citation

  • Marcelo Fernandes & Marcelo Cunha Medeiros & MArcelo Scharth, 2007. "Modeling and predicting the CBOE market volatility index," Textos para discussão 548, Department of Economics PUC-Rio (Brazil).
  • Handle: RePEc:rio:texdis:548
    as

    Download full text from publisher

    File URL: http://www.econ.puc-rio.br/pdf/td548.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mark Britten-Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
    3. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Modelling S&P 100 volatility: The information content of stock returns," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1665-1679, September.
    4. Jorion, Philippe, 1995. " Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
    5. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    6. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    7. Torben G. Andersen & Oleg Bondarenko, 2007. "Construction and Interpretation of Model-Free Implied Volatility," CREATES Research Papers 2007-24, Department of Economics and Business Economics, Aarhus University.
    8. Lamoureux, Christopher G & Lastrapes, William D, 1990. " Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    9. Xu, Xinzhong & Taylor, Stephen J., 1995. "Conditional volatility and the informational efficiency of the PHLX currency options market," Journal of Banking & Finance, Elsevier, vol. 19(5), pages 803-821, August.
    10. Hentschel, Ludger, 2003. "Errors in Implied Volatility Estimation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(04), pages 779-810, December.
    11. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    12. Estrella, Arturo & Hardouvelis, Gikas A, 1991. " The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    13. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    14. Peter Carr & Roger Lee, 2009. "Volatility Derivatives," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 319-339, November.
    15. Eric Hillebrand & Marcelo Medeiros, 2010. "The Benefits of Bagging for Forecast Models of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 571-593.
    16. Karim Abadir & Gabriel Talmain, 2002. "Aggregation, Persistence and Volatility in a Macro Model," Review of Economic Studies, Oxford University Press, vol. 69(4), pages 749-779.
    17. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    18. Chan, Kalok & Fong, Wai-Ming, 2000. "Trade size, order imbalance, and the volatility-volume relation," Journal of Financial Economics, Elsevier, vol. 57(2), pages 247-273, August.
    19. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, pages 1545-1578.
    20. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    21. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    22. He, Hua & Wang, Jiang, 1995. "Differential Information and Dynamic Behavior of Stock Trading Volume," Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 919-972.
    23. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    24. Ralitsa Petkova, 2006. "Do the Fama-French Factors Proxy for Innovations in Predictive Variables?," Journal of Finance, American Finance Association, vol. 61(2), pages 581-612, April.
    25. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus & Teyssiere, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," Journal of Econometrics, Elsevier, vol. 112(2), pages 265-294, February.
    26. Konstantinidi, Eirini & Skiadopoulos, George & Tzagkaraki, Emilia, 2008. "Can the evolution of implied volatility be forecasted? Evidence from European and US implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2401-2411, November.
    27. Becker, Ralf & Clements, Adam E. & White, Scott I., 2007. "Does implied volatility provide any information beyond that captured in model-based volatility forecasts?," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2535-2549, August.
    28. Bollerslev, Tim & Zhou, Hao, 2006. "Volatility puzzles: a simple framework for gauging return-volatility regressions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 123-150.
    29. Hamid, Shaikh A. & Iqbal, Zahid, 2004. "Using neural networks for forecasting volatility of S&P 500 Index futures prices," Journal of Business Research, Elsevier, vol. 57(10), pages 1116-1125, October.
    30. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    31. Federico M. Bandi & Benoit Perron, 2006. "Long Memory and the Relation Between Implied and Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 636-670.
    32. Adam Clements & Joanne Fuller, 2012. "Forecasting increases in the VIX: A time-varying long volatility hedge for equities," NCER Working Paper Series 88, National Centre for Econometric Research.
    33. Hu, Michael Y. & Tsoukalas, Christos, 1999. "Combining conditional volatility forecasts using neural networks: an application to the EMS exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 9(4), pages 407-422, November.
    34. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    35. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
    36. Lamoureux, Christopher G & Lastrapes, William D, 1994. "Endogenous Trading Volume and Momentum in Stock-Return Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 253-260, April.
    37. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    38. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    39. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    heterogeneous autoregression; implied volatility; smooth transition; VIX.;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rio:texdis:548. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/dpucrbr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.