IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/169.html
   My bibliography  Save this paper

Parameterizing Unconditional Skewness in Models for Financial Time Series

Author

Listed:
  • Changli He

    (Department of Economic Statistics, Stokholm School of Economic)

  • Annastiina Silvennoinen

    (School of Economics and Finance, Queensland University of Technology)

  • Timo Teräsvirta

    (Department of Economic Statistics, Stokholm School of Economic)

Abstract

In this paper we consider the third-moment structure of a class of nonlinear time series models. Empirically it is often found that the marginal distribution of financial time series is skewed. Therefore it is of importance to know what properties a model should possess if it is to accommodate for unconditional skewness. We consider modelling the unconditional mean and variance using models which respond nonlinearly or asymmetrically to shocks. We investigate the implications these models have on the third moment structure of the marginal distribution and different conditions under which the unconditional distribution exhibits skewness as well as nonzero third-order autocovariance structure. With this respect, the asymmetric or nonlinear specification of the conditional mean is found to be of greater importance than the properties of the conditional variance. Several examples are discussed and, whenever possible, explicit analytical expressions are provided for all third order moments and cross-moments. Finally, we introduce a new tool, shock impact curve, that can be used to investigate the impact of shocks on the conditional mean squared error of the return.

Suggested Citation

  • Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2005. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Research Paper Series 169, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:169
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-02/QFR-rp169.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    2. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    3. Richard Harris & C. Coskun Kucukozmen & Fatih Yilmaz, 2004. "Skewness in the conditional distribution of daily equity returns," Applied Financial Economics, Taylor & Francis Journals, vol. 14(3), pages 195-202.
    4. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    5. Harrison Hong & Jeremy C. Stein, 2003. "Differences of Opinion, Short-Sales Constraints, and Market Crashes," Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 487-525.
    6. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    7. Amado Peiro, 2002. "Skewness in individual stocks at different investment horizons," Quantitative Finance, Taylor & Francis Journals, vol. 2(2), pages 139-146.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Hagerud, Gustaf E., 1997. "Specification Tests for Asymmetric GARCH," SSE/EFI Working Paper Series in Economics and Finance 163, Stockholm School of Economics.
    10. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    11. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    12. Kurt Brannas & Niklas Nordman, 2003. "An alternative conditional asymmetry specification for stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 13(7), pages 537-541.
    13. Markku Lanne & Saikkonen Pentti, 2007. "Modeling Conditional Skewness in Stock Returns," The European Journal of Finance, Taylor & Francis Journals, vol. 13(8), pages 691-704.
    14. Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
    15. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    16. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
    17. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    18. Kurt Brannas & Niklas Nordman, 2003. "Conditional skewness modelling for stock returns," Applied Economics Letters, Taylor & Francis Journals, vol. 10(11), pages 725-728.
    19. Hong, Eun Pyo, 1991. "The autocorrelation structure for the GARCH-M process," Economics Letters, Elsevier, vol. 37(2), pages 129-132, October.
    20. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    21. González-Rivera Gloria, 1998. "Smooth-Transition GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(2), pages 1-20, July.
    22. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    23. Eric Jondeau & Michael Rockinger, 2006. "The Impact of News on Higher Moments," Swiss Finance Institute Research Paper Series 06-28, Swiss Finance Institute.
    24. Enrique Sentana, 1995. "Quadratic ARCH Models," Review of Economic Studies, Oxford University Press, vol. 62(4), pages 639-661.
    25. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    26. He, Changli & Ter svirta, Timo, 1999. "FOURTH MOMENT STRUCTURE OF THE GARCH(p,q) PROCESS," Econometric Theory, Cambridge University Press, vol. 15(06), pages 824-846, December.
    27. C. James Hueng, 2006. "Short-sales constraints and stock return asymmetry: evidence from the Chinese stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 707-716.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    2. Xue, Wen-Jun & Zhang, Li-Wen, 2017. "Stock return autocorrelations and predictability in the Chinese stock market—Evidence from threshold quantile autoregressive models," Economic Modelling, Elsevier, vol. 60(C), pages 391-401.
    3. Syriopoulos, Theodore & Makram, Beljid & Boubaker, Adel, 2015. "Stock market volatility spillovers and portfolio hedging: BRICS and the financial crisis," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 7-18.
    4. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2015. "The impact of financial crises on the risk–return tradeoff and the leverage effect," Economic Modelling, Elsevier, vol. 49(C), pages 407-418.
    5. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    6. Constantin ANGHELACHE & Janusz GRABARA & Alexandru MANOLE, 2016. "Using the Dynamic Model ARMA to Forecast the Macroeconomic Evolution," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 64(1), pages 3-13, January.
    7. Ruiz, Esther & Rodríguez, Mª José, 2009. "GARCH models with leverage effect : differences and similarities," DES - Working Papers. Statistics and Econometrics. WS ws090302, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Timo Teräsvirta & Zhenfang Zhao, 2011. "Stylized facts of return series, robust estimates and three popular models of volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 67-94.
    9. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    10. repec:bor:bistre:v:17:y:2017:i:1:p:25-48 is not listed on IDEAS
    11. Wen-Jun Xue & Li-Wen Zhang, 2016. "Stock Return Autocorrelations and Predictability in the Chinese Stock Market: Evidence from Threshold Quantile Autoregressive Models," Working Papers 1605, Florida International University, Department of Economics.
    12. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    13. Ruiz, Esther & Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. M. Angeles Carnero Fernández & Ana Pérez Espartero, 2018. "Outliers and misleading leverage effect in asymmetric GARCH-type models," Working Papers. Serie AD 2018-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    16. María José Rodríguez & Esther Ruiz, 2012. "Revisiting Several Popular GARCH Models with Leverage Effect: Differences and Similarities," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 10(4), pages 637-668, September.
    17. Morema, Kgotso & Bonga-Bonga, Lumengo, 2018. "The impact of oil and gold price fluctuations on the South African equity market: volatility spillovers and implications for portfolio management," MPRA Paper 87637, University Library of Munich, Germany.
    18. José‐María Montero & Gema Fernández‐Avilés & María‐Carmen García, 2010. "Estimation of Asymmetric Stochastic Volatility Models: Application to Daily Average Prices of Energy Products," International Statistical Review, International Statistical Institute, vol. 78(3), pages 330-347, December.

    More about this item

    Keywords

    asymmetry; GARCH; nonlinearity; stock impact curve; time series; unconditional skewness;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:169. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/qfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.