IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_448.html
   My bibliography  Save this paper

An Alternative Conditional Asymmetry Specification for Stock Returns

Author

Listed:
  • Kurt Brännäs
  • Niklas Nordman

Abstract

The paper advances the log-generalized gamma distribution as a suitable generator of conditional skewness. Based on the NYSE composite daily returns an asMA-asQGARCH model along with skewness dynamics is estimated. The results indicate a skewness that varies between sizeable negative skewness and almost symmetry. The conditional variance and skewness measures are negatively correlated.

Suggested Citation

  • Kurt Brännäs & Niklas Nordman, 2001. "An Alternative Conditional Asymmetry Specification for Stock Returns," CESifo Working Paper Series 448, CESifo Group Munich.
  • Handle: RePEc:ces:ceswps:_448
    as

    Download full text from publisher

    File URL: http://www.cesifo-group.de/DocDL/cesifo_wp448.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    2. Jan G. De Gooijer & Kurt Brännäs, 2004. "Asymmetries in conditional mean and variance: modelling stock returns by asMA-asQGARCH," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(3), pages 155-171.
    3. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
    4. Brunner, Allan D, 1992. "Conditional Asymmetries in Real GNP: A Seminonparametric Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 65-72, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brännäs, Kurt, 2003. "Temporal Aggregation of the Returns of a Stock Index Series," Umeå Economic Studies 614, Umeå University, Department of Economics.
    2. Kurt Brannas & Albina Soultanaeva, 2011. "Influence of news from Moscow and New York on returns and risks of Baltic States’ stock markets," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 11(1), pages 109-124, July.
    3. Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(2), pages 208-230, Spring.
    4. C. James Hueng, 2006. "Short-sales constraints and stock return asymmetry: evidence from the Chinese stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 707-716.
    5. Kurt Brannas & Niklas Nordman, 2003. "Conditional skewness modelling for stock returns," Applied Economics Letters, Taylor & Francis Journals, vol. 10(11), pages 725-728.
    6. Brännäs, Kurt & Soultanaeva, Albina, 2006. "Influence of News in Moscow and New York on Returns and Risks on Baltic State Stock Indices," Umeå Economic Studies 696, Umeå University, Department of Economics.
    7. Lai, Jing-yi, 2012. "Shock-dependent conditional skewness in international aggregate stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 72-83.
    8. Anders Wilhelmsson, 2006. "Garch forecasting performance under different distribution assumptions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 561-578.

    More about this item

    Keywords

    Time series; finance; nonlinearity; skewness; gamma; estimation; NYSE;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_448. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Klaus Wohlrabe). General contact details of provider: http://edirc.repec.org/data/cesifde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.