IDEAS home Printed from
   My bibliography  Save this article

Short-sales constraints and stock return asymmetry: evidence from the Chinese stock markets


  • C. James Hueng


The difficulty of short-selling stocks in the Chinese markets conforms to the assumption of the 'Differences-of-Opinion' theory and therefore, provides an empirical framework for testing the theory. The results show evidence supporting the theory: heavier trading predicts a more negatively skewed return.

Suggested Citation

  • C. James Hueng, 2006. "Short-sales constraints and stock return asymmetry: evidence from the Chinese stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 707-716.
  • Handle: RePEc:taf:apfiec:v:16:y:2006:i:10:p:707-716 DOI: 10.1080/09603100500426697

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Richard Harris & C. Coskun Kucukozmen & Fatih Yilmaz, 2004. "Skewness in the conditional distribution of daily equity returns," Applied Financial Economics, Taylor & Francis Journals, vol. 14(3), pages 195-202.
    2. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    3. Harrison Hong & Jeremy C. Stein, 2003. "Differences of Opinion, Short-Sales Constraints, and Market Crashes," Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 487-525.
    4. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Weixian Wei, 2002. "Forecasting stock market volatility with non-linear GARCH models: a case for China," Applied Economics Letters, Taylor & Francis Journals, vol. 9(3), pages 163-166.
    7. Hueng, C. James & McDonald, James B., 2005. "Forecasting asymmetries in aggregate stock market returns: Evidence from conditional skewness," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 666-685, December.
    8. Kurt Brannas & Niklas Nordman, 2003. "An alternative conditional asymmetry specification for stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 13(7), pages 537-541.
    9. Stavros Degiannakis, 2004. "Volatility forecasting: evidence from a fractional integrated asymmetric power ARCH skewed-t model," Applied Financial Economics, Taylor & Francis Journals, vol. 14(18), pages 1333-1342.
    10. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(03), pages 428-457, December.
    11. Pierluigi Bologna & Laura Cavallo, 2002. "Does the introduction of stock index futures effectively reduce stock market volatility? Is the 'futures effect' immediate? Evidence from the Italian stock exchange using GARCH," Applied Financial Economics, Taylor & Francis Journals, vol. 12(3), pages 183-192.
    12. H. R. Seddighi & W. Nian, 2004. "The Chinese stock exchange market: operations and efficiency," Applied Financial Economics, Taylor & Francis Journals, vol. 14(11), pages 785-797.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(2), pages 208-230, Spring.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:16:y:2006:i:10:p:707-716. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.