IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/140.html
   My bibliography  Save this paper

Conditional asymmetries in real GNP: a semi-nonparametric approach

Author

Listed:
  • Allan D. Brunner

Abstract

Two critical assumptions are often made in empirical research regarding the relationship between economic variables and economic disturbances--linearity and Gaussianity. Together, these two assumptions place strong restrictions on the time series behavior of a model. Most important, these restrictions imply conditional symmetry. Using seminonparametric (SNP) techniques, this article presents evidence that real gross national product growth displays conditional asymmetry. Although these results confirm related results of Brock and Sayers, Sichel, and Hamilton, the SNP approach is novel in that it emphasizes the relationship between common modeling assumptions and the restrictions that these assumptions place on data.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Allan D. Brunner, 1990. "Conditional asymmetries in real GNP: a semi-nonparametric approach," Finance and Economics Discussion Series 140, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:140
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khurshid M. KIANI & Terry L. KASTENS, 2006. "Using Macro-Financial Variables To Forecast Recessions. An Analysis Of Canada, 1957-2002," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 6(3).
    2. Giorgio Canarella & WenShwo Fang & Stephen M. Miller & Stephen K. Pollard, 2008. "Is the Great Moderation Ending? UK and US Evidence," Working Papers 0801, University of Nevada, Las Vegas , Department of Economics.
    3. Ho, Kin-Yip & Tsui, Albert K. & Zhang, Zhaoyong, 2009. "Volatility dynamics of the US business cycle: A multivariate asymmetric GARCH approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2856-2868.
    4. Joseph P. Byrne & E. Philip Davis, 2005. "Investment and Uncertainty in the G7," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 141(1), pages 1-32, April.
    5. M Sensier & D van Dijk, 2001. "Short-term Volatility Versus Long-term Growth: Evidence in US Macroeconomic Time Series," The School of Economics Discussion Paper Series 0103, Economics, The University of Manchester.
    6. John Ammer & Allan D. Brunner, 1995. "When is monetary policy effective?," International Finance Discussion Papers 520, Board of Governors of the Federal Reserve System (U.S.).
    7. Allan D. Brunner, 1997. "On The Dynamic Properties Of Asymmetric Models Of Real GNP," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 321-352, May.
    8. Fenton, Victor M. & Gallant, A. Ronald, 1996. "Qualitative and asymptotic performance of SNP density estimators," Journal of Econometrics, Elsevier, vol. 74(1), pages 77-118, September.
    9. Narayan, Paresh Kumar & Popp, Stephan, 2009. "Investigating business cycle asymmetry for the G7 countries: Evidence from over a century of data," International Review of Economics & Finance, Elsevier, vol. 18(4), pages 583-591, October.
    10. Liu, Ming & Zhang, Harold H., 1998. "Overparameterization in the seminonparametric density estimation," Economics Letters, Elsevier, vol. 60(1), pages 11-18, July.
    11. D van Dijk & D R Osborn & M Sensier, 2002. "Changes in variability of the business cycle in the G7 countries," The School of Economics Discussion Paper Series 0204, Economics, The University of Manchester.
    12. Khurshid M. Kiani, 2009. "Asymmetries in Macroeconomic Time Series in Eleven Asian Economies," International Journal of Business and Economics, College of Business and College of Finance, Feng Chia University, Taichung, Taiwan, vol. 8(1), pages 37-54, April.
    13. Cai, Yuzhi, 2007. "A quantile approach to US GNP," Economic Modelling, Elsevier, vol. 24(6), pages 969-979, November.
    14. Shively, Philip A., 2004. "The size and dynamic effect of aggregate-demand and aggregate-supply disturbances in expansionary and contractionary regimes," Journal of Macroeconomics, Elsevier, vol. 26(1), pages 83-99, March.
    15. Kurt Brannas & Niklas Nordman, 2003. "An alternative conditional asymmetry specification for stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 13(7), pages 537-541.
    16. Ho, Kin Yip & Tsui, Albert K.C., 2004. "Analysis of real GDP growth rates of greater China: An asymmetric conditional volatility approach," China Economic Review, Elsevier, vol. 15(4), pages 424-442.
    17. Perez-Alonso, Alicia, 2007. "A bootstrap approach to test the conditional symmetry in time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3484-3504, April.
    18. Marianne Sensier & Dick van Dijk, 2004. "Testing for Volatility Changes in U.S. Macroeconomic Time Series," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 833-839, August.
    19. Filippo Altissimo & Giovanni Luca VIolante, 1998. "Nonlinear VAR: Some Theory and an Application to US GNP and Unemployment," Temi di discussione (Economic working papers) 338, Bank of Italy, Economic Research and International Relations Area.
    20. Khurshid M. Kiani, 2007. "Asymmetric Business Cycle Fluctuations and Contagion Effects in G7 Countries," International Journal of Business and Economics, College of Business and College of Finance, Feng Chia University, Taichung, Taiwan, vol. 6(3), pages 237-253, December.
    21. Khurshid Kiani, 2005. "Detecting Business Cycle Asymmetries Using Artificial Neural Networks and Time Series Models," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 65-89, August.
    22. Khurshid Kiani, 2011. "Fluctuations in Economic and Activity and Stabilization Policies in the CIS," Computational Economics, Springer;Society for Computational Economics, vol. 37(2), pages 193-220, February.
    23. Khurshid M. Kiani & Prasad V. Bidarkota & Terry L. Kastens, 2005. "Forecast performance of neural networks and business cycle asymmetries," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 1(4), pages 205-210, July.

    More about this item

    Keywords

    Gross national product;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:140. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Franz Osorio). General contact details of provider: http://edirc.repec.org/data/frbgvus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.