IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Asymmetric Power Distribution: Theory and Applications to Risk Measurement

  • Ivana Komunjer

Theoretical literature in finance has shown that quantifying the risk of financial time series amounts to measuring their expected shortfall, also known as tail Value at Risk. Unfortunately, little empirical work has been devoted to the problem of modeling and inference of such risk measures and, in particular, to their estimation. In this paper, we construct a parametric estimator for the expected shortfall based on a new family of densities, which we call the Asymmetric Power Distribution (APD). The APD family extends the Generalized Power Distribution to cases where the data exhibits asymmetry. We provide a detailed description of the properties of an APD random variable, such as its quantiles, moments and moment related parameters. Moreover, we discuss the problem of simulation of such random variables and provide maximum likelihood estimates of the APD density parameters. The study of asymptotic properties of the latter falls outside the standard framework due to the non-differentiability of the APD log-likelihood. An empirical application to six daily financial market series reveals that returns tend to be asymmetric, with innovations which cannot be modeled by either Laplace (double-exponential) or Gaussian distribution, even if we allow the latter to be asymmetric. Under a more general assumption that the return innovations are APD, we are able to compute expected shortfalls and corresponding confidence intervals and thus compare the riskiness of the series examined

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Econometric Society in its series Econometric Society 2004 Latin American Meetings with number 44.

in new window

Date of creation: 11 Aug 2004
Date of revision:
Handle: RePEc:ecm:latm04:44
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
  2. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
  3. Olivier SCAILLET, 2004. "Nonparametric Estimation of Conditional Expected Shortfall," FAME Research Paper Series rp112, International Center for Financial Asset Management and Engineering.
  4. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
  5. Donald W.K. Andrews, 1993. "Empirical Process Methods in Econometrics," Cowles Foundation Discussion Papers 1059, Cowles Foundation for Research in Economics, Yale University.
  6. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
  7. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
  8. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(2), pages 275-309.
  9. Hanoch, G & Levy, Haim, 1969. "The Efficiency Analysis of Choices Involving Risk," Review of Economic Studies, Wiley Blackwell, vol. 36(107), pages 335-46, July.
  10. Feldstein, Martin S, 1969. "Mean-Variance Analysis in the Theory of Liquidity Preference and Portfolio Selection," Review of Economic Studies, Wiley Blackwell, vol. 36(105), pages 5-12, January.
  11. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
  12. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:latm04:44. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.