IDEAS home Printed from https://ideas.repec.org/p/mtl/montec/13-2007.html
   My bibliography  Save this paper

Properties and Estimation of Asymmetric Exponential Power Distribution

Author

Listed:
  • ZHU, Dongming
  • ZINDE-WALSH, Victoria

Abstract

The new distribution class, Asymmetric Exponential Power Distribution (AEPD), proposed in this paper generalizes the class of Skewed Exponential Power Distributions (SEPD) in a way that in addition to skewness introduces different decay rates of density in the left and right tails. Our parametrization provides an interpretable role for each parameter. We derive moments and moment-based measures: skewness, kurtosis, expected shortfall. It is demonstrated that a maximum entropy property holds for the AEPD distributions. We establish consistency, asymptotic normality and efficiency of the maximum likelihood estimators over a large part of the parameter space by dealing with the problems created by non-smooth likelihood function and derive explicit analytical expressions of the asymptotic covariance matrix; where the results apply to the SEPD class they enlarge on the current literature. Finally, we give a convenient stochastic representation of the distribution; our Monte Carlo study illustrates the theoretical results.

Suggested Citation

  • ZHU, Dongming & ZINDE-WALSH, Victoria, 2007. "Properties and Estimation of Asymmetric Exponential Power Distribution," Cahiers de recherche 13-2007, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  • Handle: RePEc:mtl:montec:13-2007
    as

    Download full text from publisher

    File URL: http://www.cireqmontreal.com/wp-content/uploads/cahiers/13-2007-cah.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    3. Ivana Komunjer, 2007. "Asymmetric power distribution: Theory and applications to risk measurement," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 891-921.
    4. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    5. Panayiotis Theodossiou, 2015. "Skewed Generalized Error Distribution of Financial Assets and Option Pricing," Multinational Finance Journal, Multinational Finance Journal, vol. 19(4), pages 223-266, December.
    6. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    7. Mittnik, Stefan & Paolella, Marc S., 2003. "Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions," CFS Working Paper Series 2003/04, Center for Financial Studies (CFS).
    8. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    9. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    10. Hsieh, David A, 1989. "Modeling Heteroscedasticity in Daily Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 307-317, July.
    11. Bickel, David R., 2002. "Robust estimators of the mode and skewness of continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 153-163, April.
    12. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    13. DiCiccio T.J. & Monti A.C., 2004. "Inferential Aspects of the Skew Exponential Power Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 439-450, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:bla:jtsera:v:38:y:2017:i:2:p:175-190 is not listed on IDEAS
    2. Francq, Christian & Jiménez Gamero, Maria Dolores & Meintanis, Simos, 2015. "Tests for sphericity in multivariate garch models," MPRA Paper 67411, University Library of Munich, Germany.
    3. Tumlinson, Samuel E., 2015. "On the non-existence of maximum likelihood estimates for the extended exponential power distribution and its generalizations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 111-114.
    4. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2015. "GARCH modeling of five popular commodities," Empirical Economics, Springer, vol. 48(4), pages 1691-1712, June.
    5. Francq, C. & Jiménez-Gamero, M.D. & Meintanis, S.G., 2017. "Tests for conditional ellipticity in multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 196(2), pages 305-319.
    6. Nadarajah, Saralees & Chan, Stephen & Afuecheta, Emmanuel, 2013. "On the characteristic function for asymmetric Student t distributions," Economics Letters, Elsevier, vol. 121(2), pages 271-274.
    7. Yasutomo Murasawa, 2013. "Measuring Inflation Expectations Using Interval-Coded Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(4), pages 602-623, August.
    8. Genya Kobayashi, 2016. "Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles," Computational Statistics, Springer, vol. 31(1), pages 49-88, March.
    9. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    10. Huber, Peter & Oberhofer, Harald & Pfaffermayr, Michael, 2017. "Who creates jobs? Econometric modeling and evidence for Austrian firm level data," European Economic Review, Elsevier, vol. 91(C), pages 57-71.
    11. Christian Francq & Lajos Horváth & Jean-Michel Zakoïan, 2016. "Variance Targeting Estimation of Multivariate GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(2), pages 353-382.
    12. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    13. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    14. Francq, Christian & Zakoian, Jean-Michel, 2015. "Joint inference on market and estimation risks in dynamic portfolios," MPRA Paper 68100, University Library of Munich, Germany.
    15. repec:eee:ecmode:v:68:y:2018:i:c:p:611-621 is not listed on IDEAS
    16. Dmitry I. Malakhov & Nikolay P. Pilnik & Igor G. Pospelov, 2015. "Stability of Distribution of Relative Sizes of Banks as an Argument for the Use of the Representative Agent Concept," HSE Working papers WP BRP 116/EC/2015, National Research University Higher School of Economics.
    17. J. Miguel Marin & Genaro Sucarrat, 2015. "Financial density selection," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1195-1213, November.
    18. Asquith, William H., 2014. "Parameter estimation for the 4-parameter Asymmetric Exponential Power distribution by the method of L-moments using R," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 955-970.
    19. Sucarrat, Genaro & Escribano, Álvaro, 2010. "The power log-GARCH model," UC3M Working papers. Economics we1013, Universidad Carlos III de Madrid. Departamento de Economía.
    20. Andrew Harvey & Rutger-Jan Lange, 2015. "Volatility Modeling with a Generalized t-distribution," Cambridge Working Papers in Economics 1517, Faculty of Economics, University of Cambridge.
    21. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
    22. Reiner Franke, 2015. "How Fat-Tailed is US Output Growth?," Metroeconomica, Wiley Blackwell, vol. 66(2), pages 213-242, May.

    More about this item

    Keywords

    asymmetric distributions; maximum likelihood estimation;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtl:montec:13-2007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sharon BREWER). General contact details of provider: http://edirc.repec.org/data/cdmtlca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.