IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v64y2014icp54-72.html
   My bibliography  Save this article

Reliable p-median facility location problem: two-stage robust models and algorithms

Author

Listed:
  • An, Yu
  • Zeng, Bo
  • Zhang, Yu
  • Zhao, Long

Abstract

In this paper, we propose a set of two-stage robust optimization models to design reliable p-median facility location networks subject to disruptions. We analyze their structural properties, and implement the column-and-constraint generation method with customized enhancement strategies, which is more effective than Benders cutting plane method. Numerical experiments are performed on real data and management insights on system design are presented. In particular, our study demonstrates the strong modeling capability of two-stage robust optimization scheme by including two practical issues, i.e., demand changes due to disruptions and facility capacities, which receive little attention in reliable distribution network design research. Results show the significant influence of the demand change on the network configuration.

Suggested Citation

  • An, Yu & Zeng, Bo & Zhang, Yu & Zhao, Long, 2014. "Reliable p-median facility location problem: two-stage robust models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 54-72.
  • Handle: RePEc:eee:transb:v:64:y:2014:i:c:p:54-72
    DOI: 10.1016/j.trb.2014.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514000319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2014.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    2. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    3. Wang, Xin & Ouyang, Yanfeng, 2013. "A continuum approximation approach to competitive facility location design under facility disruption risks," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 90-103.
    4. Peng, Peng & Snyder, Lawrence V. & Lim, Andrew & Liu, Zuli, 2011. "Reliable logistics networks design with facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1190-1211, September.
    5. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    6. ReVelle, C.S. & Eiselt, H.A. & Daskin, M.S., 2008. "A bibliography for some fundamental problem categories in discrete location science," European Journal of Operational Research, Elsevier, vol. 184(3), pages 817-848, February.
    7. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2011. "The Dynamic Uncapacitated Hub Location Problem," Transportation Science, INFORMS, vol. 45(1), pages 18-32, February.
    8. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    9. Sridharan, R., 1995. "The capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 87(2), pages 203-213, December.
    10. Li, Xiaopeng & Ouyang, Yanfeng, 2010. "A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 535-548, May.
    11. Michael K. Lim & Achal Bassamboo & Sunil Chopra & Mark S. Daskin, 2013. "Facility Location Decisions with Random Disruptions and Imperfect Estimation," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 239-249, May.
    12. Mozart Menezes & O. Berman & D. Krass, 2007. "Facility Reliability Issues in Network p-Median Problems: Strategic Centralization and Co-location Effects," Post-Print halshs-00170396, HAL.
    13. Alper Atamtürk & Muhong Zhang, 2007. "Two-Stage Robust Network Flow and Design Under Demand Uncertainty," Operations Research, INFORMS, vol. 55(4), pages 662-673, August.
    14. Chen, Qi & Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Joint inventory-location problem under the risk of probabilistic facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 991-1003, August.
    15. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    16. Zuo-Jun Max Shen & Roger Lezhou Zhan & Jiawei Zhang, 2011. "The Reliable Facility Location Problem: Formulations, Heuristics, and Approximation Algorithms," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 470-482, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    2. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    3. Cheng, Chun & Qi, Mingyao & Zhang, Ying & Rousseau, Louis-Martin, 2018. "A two-stage robust approach for the reliable logistics network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 185-202.
    4. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    5. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    6. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    7. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    8. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    9. Fahimnia, Behnam & Jabbarzadeh, Armin & Sarkis, Joseph, 2018. "Greening versus resilience: A supply chain design perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 129-148.
    10. Zhixue Liu & Shukun Wang & Yanfeng Ouyang, 2017. "Reliable Biomass Supply Chain Design under Feedstock Seasonality and Probabilistic Facility Disruptions," Energies, MDPI, vol. 10(11), pages 1-18, November.
    11. Yu, Guodong & Haskell, William B. & Liu, Yang, 2017. "Resilient facility location against the risk of disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 82-105.
    12. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    13. An, Shi & Cui, Na & Li, Xiaopeng & Ouyang, Yanfeng, 2013. "Location planning for transit-based evacuation under the risk of service disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 1-16.
    14. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    15. Yu, Guodong & Zhang, Jie, 2018. "Multi-dual decomposition solution for risk-averse facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 70-89.
    16. Mohammad Marufuzzaman & Sandra Duni Ekşioğlu, 2017. "Designing a Reliable and Dynamic Multimodal Transportation Network for Biofuel Supply Chains," Transportation Science, INFORMS, vol. 51(2), pages 494-517, May.
    17. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    18. Zhang, Ying & Snyder, Lawrence V. & Qi, Mingyao & Miao, Lixin, 2016. "A heterogeneous reliable location model with risk pooling under supply disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 151-178.
    19. Luohao Tang & Cheng Zhu & Zaili Lin & Jianmai Shi & Weiming Zhang, 2016. "Reliable Facility Location Problem with Facility Protection," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-24, September.
    20. Asefeh Hasani Goodarzi & Seyed Hessameddin Zegordi & Gülgün Alpan & Isa Nakhai Kamalabadi & Ali Husseinzadeh Kashan, 2021. "Reliable cross-docking location problem under the risk of disruptions," Operational Research, Springer, vol. 21(3), pages 1569-1612, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:64:y:2014:i:c:p:54-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.