IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v296y2022i1p3-21.html
   My bibliography  Save this article

Arc flow formulations based on dynamic programming: Theoretical foundations and applications

Author

Listed:
  • de Lima, Vinícius L.
  • Alves, Cláudio
  • Clautiaux, François
  • Iori, Manuel
  • Valério de Carvalho, José M.

Abstract

Network flow formulations are among the most successful tools to solve optimization problems. Such formulations correspond to determining an optimal flow in a network. One particular class of network flow formulations is the arc flow, where variables represent flows on individual arcs of the network. For NP-hard problems, polynomial-sized arc flow models typically provide weak linear relaxations and may have too much symmetry to be efficient in practice. Instead, arc flow models with a pseudo-polynomial size usually provide strong relaxations and are efficient in practice. The interest in pseudo-polynomial arc flow formulations has grown considerably in the last twenty years, in which they have been used to solve many open instances of hard problems. A remarkable advantage of pseudo-polynomial arc flow models is the possibility to solve practical-sized instances directly by a Mixed Integer Linear Programming solver, avoiding the implementation of complex methods based on column generation.

Suggested Citation

  • de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
  • Handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:3-21
    DOI: 10.1016/j.ejor.2021.04.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721003386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.04.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valerio de Carvalho, J. M., 2002. "LP models for bin packing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 253-273, September.
    2. Silva, Elsa & Alvelos, Filipe & Valério de Carvalho, J.M., 2010. "An integer programming model for two- and three-stage two-dimensional cutting stock problems," European Journal of Operational Research, Elsevier, vol. 205(3), pages 699-708, September.
    3. WOLSEY, Laurence A., 1977. "Valid inequalities, covering problems and discrete dynamic programs," LIDAM Reprints CORE 302, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Issmail Elhallaoui & Abdelmoutalib Metrane & Guy Desaulniers & François Soumis, 2011. "An Improved Primal Simplex Algorithm for Degenerate Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 569-577, November.
    5. R. Kipp Martin & Ronald L. Rardin & Brian A. Campbell, 1990. "Polyhedral Characterization of Discrete Dynamic Programming," Operations Research, INFORMS, vol. 38(1), pages 127-138, February.
    6. Martinovic, J. & Scheithauer, G., 2016. "Integer linear programming models for the skiving stock problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 356-368.
    7. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    8. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    9. L. R. Ford, Jr. & D. R. Fulkerson, 1958. "A Suggested Computation for Maximal Multi-Commodity Network Flows," Management Science, INFORMS, vol. 5(1), pages 97-101, October.
    10. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    11. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    12. J.M. van den Akker & C.A.J. Hurkens & M.W.P. Savelsbergh, 2000. "Time-Indexed Formulations for Machine Scheduling Problems: Column Generation," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 111-124, May.
    13. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates," Transportation Science, INFORMS, vol. 50(2), pages 676-693, May.
    14. Natashia Boland & Mike Hewitt & Luke Marshall & Martin Savelsbergh, 2017. "The Continuous-Time Service Network Design Problem," Operations Research, INFORMS, vol. 65(5), pages 1303-1321, October.
    15. Vitor Nesello & Maxence Delorme & Manuel Iori & Anand Subramanian, 2018. "Mathematical models and decomposition algorithms for makespan minimization in plastic rolls production," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(3), pages 326-339, March.
    16. Giuseppe Lancia & Franca Rinaldi & Paolo Serafini, 2011. "A time-indexed LP-based approach for min-sum job-shop problems," Annals of Operations Research, Springer, vol. 186(1), pages 175-198, June.
    17. L. R. Ford & D. R. Fulkerson, 1958. "Constructing Maximal Dynamic Flows from Static Flows," Operations Research, INFORMS, vol. 6(3), pages 419-433, June.
    18. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    19. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    20. John Martinovic & Guntram Scheithauer, 2016. "The proper relaxation and the proper gap of the skiving stock problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(3), pages 527-548, December.
    21. Guntram Scheithauer, 2018. "One-Dimensional Cutting Stock," International Series in Operations Research & Management Science, in: Introduction to Cutting and Packing Optimization, chapter 0, pages 73-122, Springer.
    22. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    23. Martinovic, J. & Scheithauer, G. & Valério de Carvalho, J.M., 2018. "A comparative study of the arcflow model and the one-cut model for one-dimensional cutting stock problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 458-471.
    24. Teobaldo Bulhões & Ruslan Sadykov & Anand Subramanian & Eduardo Uchoa, 2020. "On the exact solution of a large class of parallel machine scheduling problems," Journal of Scheduling, Springer, vol. 23(4), pages 411-429, August.
    25. Stefan Irnich & Guy Desaulniers & Jacques Desrosiers & Ahmed Hadjar, 2010. "Path-Reduced Costs for Eliminating Arcs in Routing and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 297-313, May.
    26. Fabio Furini & Enrico Malaguti & Dimitri Thomopulos, 2016. "Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 736-751, November.
    27. P. C. Gilmore & R. E. Gomory, 1963. "A Linear Programming Approach to the Cutting Stock Problem---Part II," Operations Research, INFORMS, vol. 11(6), pages 863-888, December.
    28. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    29. Jeremy F. Shapiro, 1968. "Dynamic Programming Algorithms for the Integer Programming Problem—I: The Integer Programming Problem Viewed as a Knapsack Type Problem," Operations Research, INFORMS, vol. 16(1), pages 103-121, February.
    30. Harald Dyckhoff, 1981. "A New Linear Programming Approach to the Cutting Stock Problem," Operations Research, INFORMS, vol. 29(6), pages 1092-1104, December.
    31. Bouarab, Hocine & El Hallaoui, Issmail & Metrane, Abdelmoutalib & Soumis, François, 2017. "Dynamic constraint and variable aggregation in column generation," European Journal of Operational Research, Elsevier, vol. 262(3), pages 835-850.
    32. Jean-Claude Picard & Maurice Queyranne, 1978. "The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling," Operations Research, INFORMS, vol. 26(1), pages 86-110, February.
    33. SOUSA, Jorge P. & WOLSEY, Laurence A., 1992. "A time indexed formulation of non-preemptive single machine scheduling problems," LIDAM Reprints CORE 984, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    34. Andre A. Cire & Adam Diamant & Tallys Yunes & Alejandro Carrasco, 2019. "A Network‐Based Formulation for Scheduling Clinical Rotations," Production and Operations Management, Production and Operations Management Society, vol. 28(5), pages 1186-1205, May.
    35. Gary D. Eppen & R. Kipp Martin, 1987. "Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition," Operations Research, INFORMS, vol. 35(6), pages 832-848, December.
    36. Guy Desaulniers & Timo Gschwind & Stefan Irnich, 2020. "Variable Fixing for Two-Arc Sequences in Branch-Price-and-Cut Algorithms on Path-Based Models," Transportation Science, INFORMS, vol. 54(5), pages 1526-5447, September.
    37. Mehdi Mrad, 2015. "An arc flow-based optimization approach for the two-stage guillotine strip cutting problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(11), pages 1850-1859, November.
    38. Hatem Ben Amor & Jacques Desrosiers & José Manuel Valério de Carvalho, 2006. "Dual-Optimal Inequalities for Stabilized Column Generation," Operations Research, INFORMS, vol. 54(3), pages 454-463, June.
    39. Natashia L. Boland & Martin W. P. Savelsbergh, 2019. "Perspectives on integer programming for time-dependent models," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 147-173, July.
    40. Issmail Elhallaoui & Daniel Villeneuve & François Soumis & Guy Desaulniers, 2005. "Dynamic Aggregation of Set-Partitioning Constraints in Column Generation," Operations Research, INFORMS, vol. 53(4), pages 632-645, August.
    41. Stefano Gualandi & Federico Malucelli, 2012. "Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 81-100, February.
    42. Kramer, Arthur & Lalla-Ruiz, Eduardo & Iori, Manuel & Voß, Stefan, 2019. "Novel formulations and modeling enhancements for the dynamic berth allocation problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 170-185.
    43. Raphael Kramer & Manuel Iori & Thibaut Vidal, 2020. "Mathematical Models and Search Algorithms for the Capacitated p -Center Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 444-460, April.
    44. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    45. Christofides, Nicos & Hadjiconstantinou, Eleni, 1995. "An exact algorithm for orthogonal 2-D cutting problems using guillotine cuts," European Journal of Operational Research, Elsevier, vol. 83(1), pages 21-38, May.
    46. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    47. Paola Cappanera & Maria Grazia Scutellà, 2015. "Joint Assignment, Scheduling, and Routing Models to Home Care Optimization: A Pattern-Based Approach," Transportation Science, INFORMS, vol. 49(4), pages 830-852, November.
    48. Kramer, Arthur & Iori, Manuel & Lacomme, Philippe, 2021. "Mathematical formulations for scheduling jobs on identical parallel machines with family setup times and total weighted completion time minimization," European Journal of Operational Research, Elsevier, vol. 289(3), pages 825-840.
    49. Clautiaux, François & Hanafi, Saïd & Macedo, Rita & Voge, Marie-Émilie & Alves, Cláudio, 2017. "Iterative aggregation and disaggregation algorithm for pseudo-polynomial network flow models with side constraints," European Journal of Operational Research, Elsevier, vol. 258(2), pages 467-477.
    50. Alberto Caprara & Matteo Fischetti & Paolo Toth, 2002. "Modeling and Solving the Train Timetabling Problem," Operations Research, INFORMS, vol. 50(5), pages 851-861, October.
    51. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    52. Macedo, Rita & Alves, Cláudio & Valério de Carvalho, J.M. & Clautiaux, François & Hanafi, Saïd, 2011. "Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model," European Journal of Operational Research, Elsevier, vol. 214(3), pages 536-545, November.
    53. Nuno Braga & Cláudio Alves & José Valério de Carvalho, 2016. "Exact Solution of Combined Cutting Stock and Scheduling Problems," Lecture Notes in Economics and Mathematical Systems, in: Raquel J. Fonseca & Gerhard-Wilhelm Weber & João Telhada (ed.), Computational Management Science, edition 1, pages 131-139, Springer.
    54. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martinovic, J. & Strasdat, N. & Valério de Carvalho, J. & Furini, F., 2023. "A combinatorial flow-based formulation for temporal bin packing problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 554-574.
    2. Tao Dai & Xiangqi Fan, 2021. "Multi-Stove Scheduling for Sustainable On-Demand Food Delivery," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    3. Jie Fang & Yunqing Rao & Qiang Luo & Jiatai Xu, 2023. "Solving One-Dimensional Cutting Stock Problems with the Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    4. Margarita P. Castro & Andre A. Cire & J. Christopher Beck, 2022. "Decision Diagrams for Discrete Optimization: A Survey of Recent Advances," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2271-2295, July.
    5. Pereira, Jordi & Ritt, Marcus, 2023. "Exact and heuristic methods for a workload allocation problem with chain precedence constraints," European Journal of Operational Research, Elsevier, vol. 309(1), pages 387-398.
    6. Alves de Queiroz, Thiago & Iori, Manuel & Kramer, Arthur & Kuo, Yong-Hong, 2023. "Dynamic scheduling of patients in emergency departments," European Journal of Operational Research, Elsevier, vol. 310(1), pages 100-116.
    7. Mathijs Barkel & Maxence Delorme, 2023. "Arcflow Formulations and Constraint Generation Frameworks for the Two Bar Charts Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 475-494, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    2. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    3. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    4. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    5. John Martinovic, 2022. "A note on the integrality gap of cutting and skiving stock instances," 4OR, Springer, vol. 20(1), pages 85-104, March.
    6. Delorme, Maxence & Iori, Manuel & Mendes, Nilson F.M., 2021. "Solution methods for scheduling problems with sequence-dependent deterioration and maintenance events," European Journal of Operational Research, Elsevier, vol. 295(3), pages 823-837.
    7. John Martinovic & Guntram Scheithauer, 2018. "Combinatorial investigations on the maximum gap for skiving stock instances of the divisible case," Annals of Operations Research, Springer, vol. 271(2), pages 811-829, December.
    8. Timo Gschwind & Stefan Irnich, 2016. "Dual Inequalities for Stabilized Column Generation Revisited," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 175-194, February.
    9. Katrin Heßler & Stefan Irnich & Tobias Kreiter & Ulrich Pferschy, 2020. "Lexicographic Bin-Packing Optimization for Loading Trucks in a Direct-Shipping System," Working Papers 2009, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    10. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    11. Mathijs Barkel & Maxence Delorme, 2023. "Arcflow Formulations and Constraint Generation Frameworks for the Two Bar Charts Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 475-494, March.
    12. Heßler, Katrin & Gschwind, Timo & Irnich, Stefan, 2018. "Stabilized branch-and-price algorithms for vector packing problems," European Journal of Operational Research, Elsevier, vol. 271(2), pages 401-419.
    13. Wang, Danni & Xiao, Fan & Zhou, Lei & Liang, Zhe, 2020. "Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation," European Journal of Operational Research, Elsevier, vol. 286(2), pages 547-563.
    14. Katrin Heßler & Stefan Irnich & Tobias Kreiter & Ulrich Pferschy, 2022. "Bin packing with lexicographic objectives for loading weight- and volume-constrained trucks in a direct-shipping system," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 1-43, June.
    15. Kramer, Arthur & Iori, Manuel & Lacomme, Philippe, 2021. "Mathematical formulations for scheduling jobs on identical parallel machines with family setup times and total weighted completion time minimization," European Journal of Operational Research, Elsevier, vol. 289(3), pages 825-840.
    16. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    17. Guy Desaulniers & François Lessard & Mohammed Saddoune & François Soumis, 2020. "Dynamic Constraint Aggregation for Solving Very Large-scale Airline Crew Pairing Problems," SN Operations Research Forum, Springer, vol. 1(3), pages 1-23, September.
    18. Martinovic, J. & Scheithauer, G. & Valério de Carvalho, J.M., 2018. "A comparative study of the arcflow model and the one-cut model for one-dimensional cutting stock problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 458-471.
    19. Adil Tahir & Guy Desaulniers & Issmail El Hallaoui, 2019. "Integral column generation for the set partitioning problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 713-744, December.
    20. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie & Andreas Fischer, 2019. "Cutting stock problems with nondeterministic item lengths: a new approach to server consolidation," 4OR, Springer, vol. 17(2), pages 173-200, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:3-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.