IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v135y2025ics0305048325000465.html
   My bibliography  Save this article

Optimization models and algorithms for sustainable crop planning and rotation: An arc flow formulation and a column generation approach

Author

Listed:
  • Benini, Mario
  • Detti, Paolo
  • Nerozzi, Luca

Abstract

Sustainable agriculture is essential for ensuring long-term food security and environmental health, as it addresses key challenges such as resource depletion, biodiversity loss, and climate change. To promote the adoption of sustainable agricultural practices, several initiatives have been introduced, offering economic incentives in exchange for compliance with sustainability policies. However, these new environmental regulations add complexity to long-term crop planning, further increasing the challenges associated with resource management and crop rotation constraints. As a result, farmers require decision-support tools to help them optimize their crop planning strategies while meeting sustainability requirements. In this paper, we present decision models and algorithms designed to assist farmers in solving multi-period crop rotation planning problems with sustainability constraints. In this setting, both the yield and profitability of a crop depend on the sequence of previous crops grown on the same plot of land, and the objective is to maximize farmers’ total profit. To address this challenge, we propose an arc-flow Integer Linear Programming model and a matheuristic algorithm, based on column generation, to efficiently solve the problem. Additionally, we analyze the complexity of the pricing problems and introduce an optimal dynamic programming algorithm for a special case. We evaluate our approach through an extensive experimental study using real-world data from Italian farms and incorporating the sustainability regulations of the European Union’s Common Agricultural Policy. The numerical results demonstrate the effectiveness of our proposed methods in optimizing crop rotation planning while ensuring compliance with sustainability constraints.

Suggested Citation

  • Benini, Mario & Detti, Paolo & Nerozzi, Luca, 2025. "Optimization models and algorithms for sustainable crop planning and rotation: An arc flow formulation and a column generation approach," Omega, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:jomega:v:135:y:2025:i:c:s0305048325000465
    DOI: 10.1016/j.omega.2025.103320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048325000465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2025.103320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Alfandari & J. Lemalade & A. Nagih & G. Plateau, 2011. "A MIP flow model for crop-rotation planning in a context of forest sustainable development," Annals of Operations Research, Springer, vol. 190(1), pages 149-164, October.
    2. Detlefsen, Nina K. & Jensen, Allan Leck, 2007. "Modelling optimal crop sequences using network flows," Agricultural Systems, Elsevier, vol. 94(2), pages 566-572, May.
    3. Onur Boyabatlı & Javad Nasiry & Yangfang (Helen) Zhou, 2019. "Crop Planning in Sustainable Agriculture: Dynamic Farmland Allocation in the Presence of Crop Rotation Benefits," Management Science, INFORMS, vol. 67(5), pages 2060-2076, May.
    4. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon & Zhang, Abraham, 2018. "Agribusiness supply chain risk management: A review of quantitative decision models," Omega, Elsevier, vol. 79(C), pages 21-42.
    5. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    6. Lana dos Santos & Philippe Michelon & Marcos Arenales & Ricardo Santos, 2011. "Crop rotation scheduling with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 165-180, October.
    7. Alfandari, Laurent & Plateau, Agnès & Schepler, Xavier, 2015. "A branch-and-price-and-cut approach for sustainable crop rotation planning," European Journal of Operational Research, Elsevier, vol. 241(3), pages 872-879.
    8. Haneveld, W. K. Klein & Stegeman, A. W., 2005. "Crop succession requirements in agricultural production planning," European Journal of Operational Research, Elsevier, vol. 166(2), pages 406-429, October.
    9. Timothy J. Lowe & Paul V. Preckel, 2004. "Decision Technologies for Agribusiness Problems: A Brief Review of Selected Literature and a Call for Research," Manufacturing & Service Operations Management, INFORMS, vol. 6(3), pages 201-208.
    10. Britz, Wolfgang & van Ittersum, Martin K. & Oude Lansink, Alfons G.J.M. & Heckelei, Thomas, 2012. "Tools for Integrated Assessment in Agriculture. State of the Art and Challenges," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(2), pages 1-26, August.
    11. Regis Mauri, Geraldo, 2019. "Improved mathematical model and bounds for the crop rotation scheduling problem with adjacency constraints," European Journal of Operational Research, Elsevier, vol. 278(1), pages 120-135.
    12. John J. Glen, 1987. "Feature Article—Mathematical Models in Farm Planning: A Survey," Operations Research, INFORMS, vol. 35(5), pages 641-666, October.
    13. dos Santos, Lana Mara R. & Costa, Alysson M. & Arenales, Marcos N. & Santos, Ricardo Henrique S., 2010. "Sustainable vegetable crop supply problem," European Journal of Operational Research, Elsevier, vol. 204(3), pages 639-647, August.
    14. Biswas, Animesh & Pal, Bijay Baran, 2005. "Application of fuzzy goal programming technique to land use planning in agricultural system," Omega, Elsevier, vol. 33(5), pages 391-398, October.
    15. Grunert, Klaus G. & Hieke, Sophie & Wills, Josephine, 2014. "Sustainability labels on food products: Consumer motivation, understanding and use," Food Policy, Elsevier, vol. 44(C), pages 177-189.
    16. Santos, Lana M.R. & Munari, Pedro & Costa, Alysson M. & Santos, Ricardo H.S., 2015. "A branch-price-and-cut method for the vegetable crop rotation scheduling problem with minimal plot sizes," European Journal of Operational Research, Elsevier, vol. 245(2), pages 581-590.
    17. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pontes, Roberto Da Silva Gervasio & Brandão, Diego Nunes & Usberti, Fábio Luiz & De Assis, Laura Silva, 2024. "Multi-objective models for crop rotation planning problems," Agricultural Systems, Elsevier, vol. 219(C).
    2. Víctor M. Albornoz & Gabriel E. Zamora, 2021. "Decomposition-based heuristic for the zoning and crop planning problem with adjacency constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 248-265, April.
    3. Jitka JANOVÁ, 2014. "Crop plan optimization under risk on a farm level in the Czech Republic," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 60(3), pages 123-132.
    4. Santos, Lana M.R. & Munari, Pedro & Costa, Alysson M. & Santos, Ricardo H.S., 2015. "A branch-price-and-cut method for the vegetable crop rotation scheduling problem with minimal plot sizes," European Journal of Operational Research, Elsevier, vol. 245(2), pages 581-590.
    5. Víctor M. Albornoz & Marcelo I. Véliz & Rodrigo Ortega & Virna Ortíz-Araya, 2020. "Integrated versus hierarchical approach for zone delineation and crop planning under uncertainty," Annals of Operations Research, Springer, vol. 286(1), pages 617-634, March.
    6. Alfandari, Laurent & Plateau, Agnès & Scheplerc, Xavier, 2014. "A Branch-and-Price-and-Cut Approach for Sustainable Crop Rotation Planning," ESSEC Working Papers WP1408, ESSEC Research Center, ESSEC Business School.
    7. Alfandari, Laurent & Plateau, Agnès & Schepler, Xavier, 2015. "A branch-and-price-and-cut approach for sustainable crop rotation planning," European Journal of Operational Research, Elsevier, vol. 241(3), pages 872-879.
    8. Laurent Alfandari & Agnès Plateau & Xavier Schepler, 2014. "A Branch-and-Price-and-Cut approach for Sustainable Crop Rotation Planning," Working Papers hal-00987708, HAL.
    9. Jahantab, Mahboubeh & Abbasi, Babak & Le Bodic, Pierre, 2023. "Farmland allocation in the conversion from conventional to organic farming," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1103-1119.
    10. Angelo Aliano Filho & Helenice Oliveira Florentino & Margarida Vaz Pato & Sônia Cristina Poltroniere & João Fernando Silva Costa, 2022. "Exact and heuristic methods to solve a bi-objective problem of sustainable cultivation," Annals of Operations Research, Springer, vol. 314(2), pages 347-376, July.
    11. repec:hal:journl:hal-00987708 is not listed on IDEAS
    12. Tuğçe Taşkıner & Bilge Bilgen, 2021. "Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review," Logistics, MDPI, vol. 5(3), pages 1-27, August.
    13. Ana Esteso & M. M. E. Alemany & Angel Ortiz & Shaofeng Liu, 2022. "Optimization model to support sustainable crop planning for reducing unfairness among farmers," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 1101-1127, September.
    14. Alysson Costa & Lana Santos & Douglas Alem & Ricardo Santos, 2014. "Sustainable vegetable crop supply problem with perishable stocks," Annals of Operations Research, Springer, vol. 219(1), pages 265-283, August.
    15. Mariana Escallón-Barrios & Daniel Castillo-Gomez & Jorge Leal & Carlos Montenegro & Andrés L. Medaglia, 2022. "Improving harvesting operations in an oil palm plantation," Annals of Operations Research, Springer, vol. 314(2), pages 411-449, July.
    16. Chintapalli, Prashant & Tang, Christopher S., 2022. "The implications of crop minimum support price in the presence of myopic and strategic farmers," European Journal of Operational Research, Elsevier, vol. 300(1), pages 336-349.
    17. Regis Mauri, Geraldo, 2019. "Improved mathematical model and bounds for the crop rotation scheduling problem with adjacency constraints," European Journal of Operational Research, Elsevier, vol. 278(1), pages 120-135.
    18. Tarun Jain & Jishnu Hazra & T. C. E. Cheng, 2023. "Analysis of upstream pricing regulation and contract structure in an agriculture supply chain," Annals of Operations Research, Springer, vol. 320(1), pages 85-122, January.
    19. Aliano Filho, Angelo & A. Oliveira, Washington & Melo, Teresa, 2023. "Multi-objective optimization for integrated sugarcane cultivation and harvesting planning," European Journal of Operational Research, Elsevier, vol. 309(1), pages 330-344.
    20. Wenbo Zhang & Wilbert Wilhelm, 2011. "OR/MS decision support models for the specialty crops industry: a literature review," Annals of Operations Research, Springer, vol. 190(1), pages 131-148, October.
    21. Ernst-August Nuppenau, 2018. "Soil Fertility Management by Transition Matrices and Crop Rotation: On Spatial and Dynamic Aspects in Programming of Ecosystem Services," Sustainability, MDPI, vol. 10(7), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:135:y:2025:i:c:s0305048325000465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.