IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v5y2021i3p52-d609306.html
   My bibliography  Save this article

Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review

Author

Listed:
  • Tuğçe Taşkıner

    (Graduate School of Natural and Applied Sciences, Department of Industrial Engineering, Tınaztepe Campus, Dokuz Eylul University, Buca, İzmir 35160, Turkey)

  • Bilge Bilgen

    (Department of Industrial Engineering, Faculty of Engineering, Tınaztepe Campus, Dokuz Eylul University, Buca, İzmir 35397, Turkey)

Abstract

This paper provides a comprehensive review of the research done on optimization models that focus on harvest and production planning for food crops. Optimization models have been used extensively in providing insights to decision-makers on issues related to harvest and production planning in agri-food supply chains. First, we conduct an extensive literature review on previous survey articles to distinguish our research from others. Based on the previous reviews, a new classification scheme is developed to classify articles systematically. Harvest and production planning problems in agri-food supply chains are analyzed through three sections: problem scope, model characteristics, and modeling approach. Neglected problem topics and several promising research directions are presented to stimulate research interest on agri-food supply chains specifically planning of harvest and production.

Suggested Citation

  • Tuğçe Taşkıner & Bilge Bilgen, 2021. "Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review," Logistics, MDPI, vol. 5(3), pages 1-27, August.
  • Handle: RePEc:gam:jlogis:v:5:y:2021:i:3:p:52-:d:609306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/5/3/52/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/5/3/52/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A Higgins & G Beashel & A Harrison, 2006. "Scheduling of brand production and shipping within a sugar supply chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 490-498, May.
    2. A J Higgins & L A Laredo, 2006. "Improving harvesting and transport planning within a sugar value chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 367-376, April.
    3. Wenbo Zhang & Wilbert Wilhelm, 2011. "OR/MS decision support models for the specialty crops industry: a literature review," Annals of Operations Research, Springer, vol. 190(1), pages 131-148, October.
    4. Burak Kazaz & Scott Webster, 2011. "The Impact of Yield-Dependent Trading Costs on Pricing and Production Planning Under Supply Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 404-417, July.
    5. Soto-Silva, Wladimir E. & Nadal-Roig, Esteve & González-Araya, Marcela C. & Pla-Aragones, Lluis M., 2016. "Operational research models applied to the fresh fruit supply chain," European Journal of Operational Research, Elsevier, vol. 251(2), pages 345-355.
    6. Alysson Costa & Lana Santos & Douglas Alem & Ricardo Santos, 2014. "Sustainable vegetable crop supply problem with perishable stocks," Annals of Operations Research, Springer, vol. 219(1), pages 265-283, August.
    7. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    8. J V Caixeta-Filho, 2006. "Orange harvesting scheduling management: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 637-642, June.
    9. John J. Glen, 1987. "Feature Article—Mathematical Models in Farm Planning: A Survey," Operations Research, INFORMS, vol. 35(5), pages 641-666, October.
    10. Cleber D. Rocco & Reinaldo Morabito, 2016. "Robust optimisation approach applied to the analysis of production / logistics and crop planning in the tomato processing industry," International Journal of Production Research, Taylor & Francis Journals, vol. 54(19), pages 5842-5861, October.
    11. Rong, Aiying & Akkerman, Renzo & Grunow, Martin, 2011. "An optimization approach for managing fresh food quality throughout the supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 421-429, May.
    12. Flores, Hector & Villalobos, J. Rene, 2020. "A stochastic planning framework for the discovery of complementary, agricultural systems," European Journal of Operational Research, Elsevier, vol. 280(2), pages 707-729.
    13. Jianli Luo & Chen Ji & Chunxiao Qiu & Fu Jia, 2018. "Agri-Food Supply Chain Management: Bibliometric and Content Analyses," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    14. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    15. Widodo, K.H. & Nagasawa, H. & Morizawa, K. & Ota, M., 2006. "A periodical flowering-harvesting model for delivering agricultural fresh products," European Journal of Operational Research, Elsevier, vol. 170(1), pages 24-43, April.
    16. Piewthongngam, Kullapapruk & Pathumnakul, Supachai & Setthanan, Kanchana, 2009. "Application of crop growth simulation and mathematical modeling to supply chain management in the Thai sugar industry," Agricultural Systems, Elsevier, vol. 102(1-3), pages 58-66, October.
    17. Flores, Hector & Villalobos, J. Rene, 2018. "A modeling framework for the strategic design of local fresh-food systems," Agricultural Systems, Elsevier, vol. 161(C), pages 1-15.
    18. An, Kun & Ouyang, Yanfeng, 2016. "Robust grain supply chain design considering post-harvest loss and harvest timing equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 110-128.
    19. Bohle, Carlos & Maturana, Sergio & Vera, Jorge, 2010. "A robust optimization approach to wine grape harvesting scheduling," European Journal of Operational Research, Elsevier, vol. 200(1), pages 245-252, January.
    20. Ferrer, Juan-Carlos & Mac Cawley, Alejandro & Maturana, Sergio & Toloza, Sergio & Vera, Jorge, 2008. "An optimization approach for scheduling wine grape harvest operations," International Journal of Production Economics, Elsevier, vol. 112(2), pages 985-999, April.
    21. Jonkman, Jochem & Barbosa-Póvoa, Ana P. & Bloemhof, Jacqueline M., 2019. "Integrating harvesting decisions in the design of agro-food supply chains," European Journal of Operational Research, Elsevier, vol. 276(1), pages 247-258.
    22. Kusumastuti, Ratih Dyah & Donk, Dirk Pieter van & Teunter, Ruud, 2016. "Crop-related harvesting and processing planning: a review," International Journal of Production Economics, Elsevier, vol. 174(C), pages 76-92.
    23. Ahumada, Omar & Villalobos, J. Rene, 2011. "Operational model for planning the harvest and distribution of perishable agricultural products," International Journal of Production Economics, Elsevier, vol. 133(2), pages 677-687, October.
    24. Ana Esteso & M.M.E. Alemany & Angel Ortiz, 2018. "Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models," International Journal of Production Research, Taylor & Francis Journals, vol. 56(13), pages 4418-4446, July.
    25. Junqueira, Rogerio de Ávila Ribeiro & Morabito, Reinaldo, 2019. "Modeling and solving a sugarcane harvest front scheduling problem," International Journal of Production Economics, Elsevier, vol. 213(C), pages 150-160.
    26. Ahumada, Omar & Rene Villalobos, J. & Nicholas Mason, A., 2012. "Tactical planning of the production and distribution of fresh agricultural products under uncertainty," Agricultural Systems, Elsevier, vol. 112(C), pages 17-26.
    27. Grunow, M. & Gunther, H.-O. & Westinner, R., 2007. "Supply optimization for the production of raw sugar," International Journal of Production Economics, Elsevier, vol. 110(1-2), pages 224-239, October.
    28. Timothy J. Lowe & Paul V. Preckel, 2004. "Decision Technologies for Agribusiness Problems: A Brief Review of Selected Literature and a Call for Research," Manufacturing & Service Operations Management, INFORMS, vol. 6(3), pages 201-208.
    29. Wishon, C. & Villalobos, J.R. & Mason, N. & Flores, H. & Lujan, G., 2015. "Use of MIP for planning temporary immigrant farm labor force," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 25-33.
    30. Vitoriano, B. & Ortuno, M. T. & Recio, B. & Rubio, F. & Alonso-Ayuso, A., 2003. "Two alternative models for farm management: Discrete versus continuous time horizon," European Journal of Operational Research, Elsevier, vol. 144(3), pages 613-628, February.
    31. Burak Kazaz, 2004. "Production Planning Under Yield and Demand Uncertainty with Yield-Dependent Cost and Price," Manufacturing & Service Operations Management, INFORMS, vol. 6(3), pages 209-224, October.
    32. Reis, Silvia Araújo & Leal, José Eugenio, 2015. "A deterministic mathematical model to support temporal and spatial decisions of the soybean supply chain," Journal of Transport Geography, Elsevier, vol. 43(C), pages 48-58.
    33. Jena, Sanjay Dominik & Poggi, Marcus, 2013. "Harvest planning in the Brazilian sugar cane industry via mixed integer programming," European Journal of Operational Research, Elsevier, vol. 230(2), pages 374-384.
    34. Kamble, Sachin S. & Gunasekaran, Angappa & Gawankar, Shradha A., 2020. "Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications," International Journal of Production Economics, Elsevier, vol. 219(C), pages 179-194.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shunyu Yao & Neng Fan & Clark Seavert & Trent Teegerstrom, 2023. "Demand-Driven Harvest Planning and Machinery Scheduling for Guayule," SN Operations Research Forum, Springer, vol. 4(1), pages 1-25, March.
    2. Rizwan Abbas & Gehad Abdullah Amran & Irshad Hussain & Shengjun Ma, 2022. "A Soft Computing View for the Scientific Categorization of Vegetable Supply Chain Issues," Logistics, MDPI, vol. 6(3), pages 1-17, June.
    3. Franco Basso & Juan Pablo Contreras & Raúl Pezoa & Alejandro Troncozo & Mauricio Varas, 2023. "Optimizing the wine transportation process from bottling plants to ports," Operational Research, Springer, vol. 23(2), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kusumastuti, Ratih Dyah & Donk, Dirk Pieter van & Teunter, Ruud, 2016. "Crop-related harvesting and processing planning: a review," International Journal of Production Economics, Elsevier, vol. 174(C), pages 76-92.
    2. Soto-Silva, Wladimir E. & Nadal-Roig, Esteve & González-Araya, Marcela C. & Pla-Aragones, Lluis M., 2016. "Operational research models applied to the fresh fruit supply chain," European Journal of Operational Research, Elsevier, vol. 251(2), pages 345-355.
    3. Kate, Joeri ten & Teunter, Ruud & Kusumastuti, Ratih Dyah & van Donk, Dirk Pieter, 2017. "Bio-diesel production using mobile processing units: A case in Indonesia," Agricultural Systems, Elsevier, vol. 152(C), pages 121-130.
    4. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon & Zhang, Abraham, 2018. "Agribusiness supply chain risk management: A review of quantitative decision models," Omega, Elsevier, vol. 79(C), pages 21-42.
    5. Gómez-Lagos, Javier E. & González-Araya, Marcela C. & Soto-Silva, Wladimir E. & Rivera-Moraga, Masly M., 2021. "Optimizing tactical harvest planning for multiple fruit orchards using a metaheuristic modeling approach," European Journal of Operational Research, Elsevier, vol. 290(1), pages 297-312.
    6. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    7. Yiping Jiang & Liangqi Chen & Yan Fang, 2018. "Integrated Harvest and Distribution Scheduling with Time Windows of Perishable Agri-Products in One-Belt and One-Road Context," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    8. Ramos, Francisco López & Batres, Rafael & De-la-Cruz-Márquez, Cynthia Griselle & Anzures, Melina López, 2023. "Optimization models for nopal crop planning with land usage expansion and government subsidy," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    9. Víctor M. Albornoz & Lia C. Araneda & Rodrigo Ortega, 2022. "Planning and scheduling of selective harvest with management zones delineation," Annals of Operations Research, Springer, vol. 316(2), pages 873-890, September.
    10. Wishon, C. & Villalobos, J.R. & Mason, N. & Flores, H. & Lujan, G., 2015. "Use of MIP for planning temporary immigrant farm labor force," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 25-33.
    11. Tri-Dung Nguyen & Uday Venkatadri & Tri Nguyen-Quang & Claver Diallo & Duc-Huy Pham & Huu-Thanh Phan & Le-Khai Pham & Phu-Cuong Nguyen & Michelle Adams, 2024. "Stochastic Modelling Frameworks for Dragon Fruit Supply Chains in Vietnam under Uncertain Factors," Sustainability, MDPI, vol. 16(6), pages 1-29, March.
    12. Flores, Hector & Villalobos, J. Rene, 2018. "A modeling framework for the strategic design of local fresh-food systems," Agricultural Systems, Elsevier, vol. 161(C), pages 1-15.
    13. Sheng-I Chen & Wei-Fu Chen, 2021. "The Optimal Harvest Decisions for Natural and Artificial Maturation Mangoes under Uncertain Demand, Yields and Prices," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    14. Besik, Deniz & Nagurney, Anna & Dutta, Pritha, 2023. "An integrated multitiered supply chain network model of competing agricultural firms and processing firms: The case of fresh produce and quality," European Journal of Operational Research, Elsevier, vol. 307(1), pages 364-381.
    15. Junqueira, Rogerio de Ávila Ribeiro & Morabito, Reinaldo, 2019. "Modeling and solving a sugarcane harvest front scheduling problem," International Journal of Production Economics, Elsevier, vol. 213(C), pages 150-160.
    16. Rana Azab & Rana S. Mahmoud & Rahma Elbehery & Mohamed Gheith, 2023. "A Bi-Objective Mixed-Integer Linear Programming Model for a Sustainable Agro-Food Supply Chain with Product Perishability and Environmental Considerations," Logistics, MDPI, vol. 7(3), pages 1-29, July.
    17. V. R. Ghezavati & S. Hooshyar & R. Tavakkoli-Moghaddam, 2017. "A Benders’ decomposition algorithm for optimizing distribution of perishable products considering postharvest biological behavior in agri-food supply chain: a case study of tomato," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 29-54, March.
    18. Onur Boyabatlı & Javad Nasiry & Yangfang (Helen) Zhou, 2019. "Crop Planning in Sustainable Agriculture: Dynamic Farmland Allocation in the Presence of Crop Rotation Benefits," Management Science, INFORMS, vol. 67(5), pages 2060-2076, May.
    19. Jahantab, Mahboubeh & Abbasi, Babak & Le Bodic, Pierre, 2023. "Farmland allocation in the conversion from conventional to organic farming," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1103-1119.
    20. Palmowski, Zbigniew & Sidorowicz, Aleksandra, 2020. "An application of dynamic programming to assign pressing tanks at wineries," European Journal of Operational Research, Elsevier, vol. 287(1), pages 293-305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:5:y:2021:i:3:p:52-:d:609306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.