IDEAS home Printed from
   My bibliography  Save this article

Dynamic hedge fund portfolio construction: A semi-parametric approach


  • Harris, Richard D.F.
  • Mazibas, Murat


In this article, we evaluate alternative optimization frameworks for constructing portfolios of hedge funds. We compare the standard mean–variance optimization model with models based on CVaR, CDaR and Omega, for both conservative and aggressive hedge fund investment strategies. In order to implement the CVaR, CDaR and Omega optimization models, we propose a semi-parametric methodology, which is based on extreme value theory, copula and Monte Carlo simulation. We compare the semi-parametric approach with the standard, non-parametric approach, used to compute CVaR, CDaR and Omega, and the benchmark parametric approach, based on both static and dynamic mean–variance optimization. We report two main findings. The first is that the CVaR, CDaR and Omega models offer a significant improvement in terms of risk-adjusted portfolio performance over the parametric mean–variance model. The second is that semi-parametric estimation of the CVaR, CDaR and Omega models offers a very substantial improvement over non-parametric estimation. Our results are robust to the choice of target return, risk limit and estimation sample size.

Suggested Citation

  • Harris, Richard D.F. & Mazibas, Murat, 2013. "Dynamic hedge fund portfolio construction: A semi-parametric approach," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 139-149.
  • Handle: RePEc:eee:jbfina:v:37:y:2013:i:1:p:139-149 DOI: 10.1016/j.jbankfin.2012.08.017

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Harris, Richard D.F. & Mazibas, Murat, 2010. "Dynamic hedge fund portfolio construction," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 351-357, December.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Fung, William & Hsieh, David A, 2001. "The Risk in Hedge Fund Strategies: Theory and Evidence from Trend Followers," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 313-341.
    6. Giamouridis, Daniel & Vrontos, Ioannis D., 2007. "Hedge fund portfolio construction: A comparison of static and dynamic approaches," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 199-217, January.
    7. Vikas Agarwal, 2004. "Risks and Portfolio Decisions Involving Hedge Funds," Review of Financial Studies, Society for Financial Studies, vol. 17(1), pages 63-98.
    8. Wegener, Christian & von Nitzsch, Rüdiger & Cengiz, Cetin, 2010. "An advanced perspective on the predictability in hedge fund returns," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2694-2708, November.
    9. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    10. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    11. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    12. Manfred Gilli & Evis Këllezi & Hilda Hysi, "undated". "A Data-Driven Optimization Heuristic for Downside Risk Minimization," Swiss Finance Institute Research Paper Series 06-02, Swiss Finance Institute.
    13. J. Cvitanic & A. Lazrak & L. Martellini & F. Zapatero, 2003. "Optimal allocation to hedge funds: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 28-39.
    14. Fung, William & Hsieh, David A, 1997. "Empirical Characteristics of Dynamic Trading Strategies: The Case of Hedge Funds," Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 275-302.
    15. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    16. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    17. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
    2. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "Semi-nonparametric VaR forecasts for hedge funds during the recent crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 330-343.
    3. repec:eee:intfin:v:50:y:2017:i:c:p:1-12 is not listed on IDEAS
    4. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    5. Víctor M. Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, "undated". "Portfolios in the Ibex 35 index: Alternative methods to the traditional framework, a comparative with the naive diversification in a pre- and post- crisis context," Documentos de Trabajo del ICAE 2015-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Jun 2015.
    6. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    7. León, Ángel & Moreno, Manuel, 2015. "Lower Partial Moments under Gram Charlier Distribution: Performance Measures and Efficient Frontiers," QM&ET Working Papers 15-3, University of Alicante, D. Quantitative Methods and Economic Theory.
    8. Massimiliano Kaucic & Roberto Daris, 2015. "Multi-Objective Stochastic Optimization Programs for a Non-Life Insurance Company under Solvency Constraints," Risks, MDPI, Open Access Journal, vol. 3(3), pages 1-30, September.

    More about this item


    Funds of hedge funds; Portfolio optimization; Copula; Extreme value theory; Monte Carlo simulation;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:37:y:2013:i:1:p:139-149. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.