IDEAS home Printed from https://ideas.repec.org/p/aof/wpaper/wp-0007.html
   My bibliography  Save this paper

Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation

Author

Listed:
  • Gilles Boevi KOUMOU
  • Georges DIONNE

Abstract

We provide an axiomatic foundation for the measurement of correlation diversification measures in a one-period portfolio model. We propose a set of nine desirable axioms for this class of diversification measures. We name the measures satisfying these axioms coherent correlation diversification measures which we distinguish from coherent risk measures. We provide the decision theoretic foundations of our axioms by studying their compatibility with investors¡¯ preference for diversification in rank-dependent expected utility theory. We examine some of the most frequently used methods for measuring correlation diversification in terms of our axioms. Lastly, we explore whether our axioms have a representation function.

Suggested Citation

  • Gilles Boevi KOUMOU & Georges DIONNE, 2021. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Working Papers 7, Africa Institute for Research in Economics and Social Sciences.
  • Handle: RePEc:aof:wpaper:wp-0007
    as

    Download full text from publisher

    File URL: https://airess.fgses-um6p.ma/photos/publication/016157a403fc7c8339c9c3ad2621363e.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Degen, Matthias & Lambrigger, Dominik D. & Segers, Johan, 2010. "Risk concentration and diversification: Second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 541-546, June.
    2. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    3. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    4. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    5. Dhaene, Jan & Denuit, Michel & Vanduffel, Steven, 2009. "Correlation order, merging and diversification," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 325-332, December.
    6. Nakamura, Yutaka, 2015. "Mean-variance utility," Journal of Economic Theory, Elsevier, vol. 160(C), pages 536-556.
    7. Mao, Tiantian & Lv, Wenhua & Hu, Taizhong, 2012. "Second-order expansions of the risk concentration based on CTE," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 449-456.
    8. Dirk Tasche, 2005. "Measuring sectoral diversification in an asymptotic multi-factor framework," Papers physics/0505142, arXiv.org, revised Jul 2006.
    9. Hans Föllmer & Stefan Weber, 2015. "The Axiomatic Approach to Risk Measures for Capital Determination," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 301-337, December.
    10. Alain Chateauneuf & Ghizlane Lakhnati, 2007. "From sure to strong diversification," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 32(3), pages 511-522, September.
    11. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    12. John L. Evans & Stephen H. Archer, 1968. "Diversification And The Reduction Of Dispersion: An Empirical Analysis," Journal of Finance, American Finance Association, vol. 23(5), pages 761-767, December.
    13. Enrico G. De Giorgi & Ola Mahmoud, 2016. "Diversification preferences in the theory of choice," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(2), pages 143-174, November.
    14. Benoît Carmichael & Gilles Boevi Koumou & Kevin Moran, 2015. "Unifying Portfolio Diversification Measures Using Rao's Quadratic Entropy," Cahiers de recherche 1508, CIRPEE.
    15. Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
    16. Tsanakas, A. & Desli, E., 2003. "Risk Measures and Theories of Choice," British Actuarial Journal, Cambridge University Press, vol. 9(4), pages 959-991, October.
    17. Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
    18. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    19. Mohammed Abdellaoui, 2002. "A Genuine Rank-Dependent Generalization of the Von Neumann-Morgenstern Expected Utility Theorem," Econometrica, Econometric Society, vol. 70(2), pages 717-736, March.
    20. Jean-Marc Tallon & Alain Chateauneuf, 2002. "Diversification, convex preferences and non-empty core in the Choquet expected utility model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 19(3), pages 509-523.
    21. Jean-Marc Tallon & Alain Chateauneuf, 2002. "Diversification, convex preferences and non-empty core in the Choquet expected utility model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 19(3), pages 509-523.
    22. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    23. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    24. Schoemaker, Paul J H, 1982. "The Expected Utility Model: Its Variants, Purposes, Evidence and Limitations," Journal of Economic Literature, American Economic Association, vol. 20(2), pages 529-563, June.
    25. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    26. Chris Starmer, 2000. "Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk," Journal of Economic Literature, American Economic Association, vol. 38(2), pages 332-382, June.
    27. Larry G. Epstein & Stephen M. Tanny, 1980. "Increasing Generalized Correlation: A Definition and Some Economic Consequences," Canadian Journal of Economics, Canadian Economics Association, vol. 13(1), pages 16-34, February.
    28. Scott Willenbrock, 2011. "Diversification Return, Portfolio Rebalancing, and the Commodity Return Puzzle," Papers 1109.1256, arXiv.org.
    29. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    30. Dong, Jing & Cheung, Ka Chun & Yang, Hailiang, 2010. "Upper comonotonicity and convex upper bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 159-166, October.
    31. Scott F. Richard, 1975. "Multivariate Risk Aversion, Utility Independence and Separable Utility Functions," Management Science, INFORMS, vol. 22(1), pages 12-21, September.
    32. Tong, Bin & Wu, Chongfeng & Xu, Weidong, 2012. "Risk concentration of aggregated dependent risks: The second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 139-149.
    33. Benoît Carmichael & Gilles Boevi Koumou & Kevin Moran, 2018. "Rao’s quadratic entropy and maximum diversification indexation," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 1017-1031, June.
    34. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A. & Tang, Qihe, 2004. "A comonotonic image of independence for additive risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 581-594, December.
    35. Degen, Matthias & Lambrigger, Dominik D. & Segers, Johan, 2010. "Risk concentration and diversification: Second-order properties," LIDAM Reprints ISBA 2010011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    36. Meyer, Jack, 1987. "Two-moment Decision Models and Expected Utility Maximization," American Economic Review, American Economic Association, vol. 77(3), pages 421-430, June.
    37. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    38. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    39. Song, Yongsheng & Yan, Jia-An, 2009. "Risk measures with comonotonic subadditivity or convexity and respecting stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 459-465, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    2. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    3. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    4. Assa, Hirbod & Zimper, Alexander, 2018. "Preferences over all random variables: Incompatibility of convexity and continuity," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 71-83.
    5. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2013. "“Beyond Value-at-Risk: GlueVaR Distortion Risk Measures”," IREA Working Papers 201302, University of Barcelona, Research Institute of Applied Economics, revised Feb 2013.
    6. Enrico G. De Giorgi & Ola Mahmoud, 2016. "Diversification preferences in the theory of choice," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(2), pages 143-174, November.
    7. Thomas Epper & Helga Fehr-Duda, 2012. "The missing link: unifying risk taking and time discounting," ECON - Working Papers 096, Department of Economics - University of Zurich, revised Oct 2018.
    8. Silvana Pesenti & Qiuqi Wang & Ruodu Wang, 2020. "Optimizing distortion riskmetrics with distributional uncertainty," Papers 2011.04889, arXiv.org.
    9. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    10. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "Decision principles derived from risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 294-302, December.
    11. Liu, Peng & Wang, Ruodu & Wei, Linxiao, 2020. "Is the inf-convolution of law-invariant preferences law-invariant?," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 144-154.
    12. Elisa Pagani, 2015. "Certainty Equivalent: Many Meanings of a Mean," Working Papers 24/2015, University of Verona, Department of Economics.
    13. Wakker, Peter P. & Yang, Jingni, 2019. "A powerful tool for analyzing concave/convex utility and weighting functions," Journal of Economic Theory, Elsevier, vol. 181(C), pages 143-159.
    14. Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
    15. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    16. Hirbod Assa, 2015. "Optimal risk allocation in a market with non-convex preferences," Papers 1503.04460, arXiv.org.
    17. Caporin, Massimiliano & Costola, Michele & Jannin, Gregory & Maillet, Bertrand, 2018. "“On the (Ab)use of Omega?”," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 11-33.
    18. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    19. Steven Kou & Xianhua Peng, 2014. "On the Measurement of Economic Tail Risk," Papers 1401.4787, arXiv.org, revised Aug 2015.
    20. Grigorova Miryana, 2014. "Stochastic dominance with respect to a capacity and risk measures," Statistics & Risk Modeling, De Gruyter, vol. 31(3-4), pages 1-37, December.

    More about this item

    Keywords

    Portfolio Theory; Portfolio Diversification; Preference for Diversification; Correlation Diversification; Rank-Dependent Expected Utility Theory;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G1 - Financial Economics - - General Financial Markets
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aof:wpaper:wp-0007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/aim6pma.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Africa Institute for Research in Economics and Social Sciences Customer service (email available below). General contact details of provider: https://edirc.repec.org/data/aim6pma.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.