IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v44y2009i2p268-277.html
   My bibliography  Save this article

To split or not to split: Capital allocation with convex risk measures

Author

Listed:
  • Tsanakas, Andreas

Abstract

Convex risk measures were introduced by Deprez and Gerber [Deprez, O., Gerber, H.U., 1985. On convex principles of premium calculation. Insurance: Math. Econom. 4 (3), 179-189]. Here the problem of allocating risk capital to subportfolios is addressed, when convex risk measures are used. The Aumann-Shapley value is proposed as an appropriate allocation mechanism. Distortion-exponential measures are discussed extensively and explicit capital allocation formulas are obtained for the case that the risk measure belongs to this family. Finally the implications of capital allocation with a convex risk measure for the stability of portfolios are discussed. It is demonstrated that using a convex risk measure for capital allocation can produce an incentive for infinite fragmentation of portfolios.

Suggested Citation

  • Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
  • Handle: RePEc:eee:insuma:v:44:y:2009:i:2:p:268-277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00042-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    2. Tsanakas, A. & Desli, E., 2003. "Risk Measures and Theories of Choice," British Actuarial Journal, Cambridge University Press, vol. 9(4), pages 959-991, October.
    3. Marinacci, Massimo & Montrucchio, Luigi, 2004. "A characterization of the core of convex games through Gateaux derivatives," Journal of Economic Theory, Elsevier, vol. 116(2), pages 229-248, June.
    4. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    5. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    6. repec:dau:papers:123456789/5446 is not listed on IDEAS
    7. E. Jouini & W. Schachermayer & N. Touzi, 2008. "Optimal Risk Sharing For Law Invariant Monetary Utility Functions," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 269-292, April.
    8. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    9. Dhaene, Jan & Goovaerts, Marc J., 1996. "Dependency of Risks and Stop-Loss Order1," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 201-212, November.
    10. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    11. Pauline Barrieu & Nicole El Karoui, 2005. "Inf-convolution of risk measures and optimal risk transfer," Finance and Stochastics, Springer, vol. 9(2), pages 269-298, April.
    12. Leonard J. Mirman & Yair Tauman, 1982. "Demand Compatible Equitable Cost Sharing Prices," Mathematics of Operations Research, INFORMS, vol. 7(1), pages 40-56, February.
    13. Deprez, Olivier & Gerber, Hans U., 1985. "On convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 4(3), pages 179-189, July.
    14. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    15. Louis J. Billera & David C. Heath, 1982. "Allocation of Shared Costs: A Set of Axioms Yielding A Unique Procedure," Mathematics of Operations Research, INFORMS, vol. 7(1), pages 32-39, February.
    16. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    17. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Helmut Gründl & Hato Schmeiser, 2007. "Capital Allocation for Insurance Companies—What Good IS IT?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 301-317, June.
    19. Lemaire, Jean, 1984. "An Application of Game Theory: Cost Allocation," ASTIN Bulletin, Cambridge University Press, vol. 14(1), pages 61-81, April.
    20. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    21. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    22. repec:dau:papers:123456789/361 is not listed on IDEAS
    23. Barrieu, Pauline & El Karoui, Nicole, 2005. "Inf-convolution of risk measures and optimal risk transfer," LSE Research Online Documents on Economics 2829, London School of Economics and Political Science, LSE Library.
    24. Tsanakas, Andreas & Barnett, Christopher, 2003. "Risk capital allocation and cooperative pricing of insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 239-254, October.
    25. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    26. Gerber, Hans U., 1974. "On Additive Premium Calculation Principles," ASTIN Bulletin, Cambridge University Press, vol. 7(3), pages 215-222, March.
    27. Susanne Klöppel & Martin Schweizer, 2007. "Dynamic Indifference Valuation Via Convex Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 599-627, October.
    28. Jean-Pierre Aubin, 1981. "Cooperative Fuzzy Games," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 1-13, February.
    29. Damir Filipović & Michael Kupper, 2008. "Optimal Capital And Risk Transfers For Group Diversification," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 55-76, January.
    30. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boonen, Tim J., 2017. "Risk Redistribution Games With Dual Utilities," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 303-329, January.
    2. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    3. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    4. Alessandro Doldi & Marco Frittelli, 2021. "Real-Valued Systemic Risk Measures," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
    5. Li, Peng & Lim, Andrew E.B. & Shanthikumar, J. George, 2010. "Optimal risk transfer for agents with germs," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 1-12, August.
    6. Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
    7. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    8. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    9. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    10. Gabriele Canna & Francesca Centrone & Emanuela Rosazza Gianin, 2021. "Capital Allocation Rules and the No-Undercut Property," Mathematics, MDPI, vol. 9(2), pages 1-13, January.
    11. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    12. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    13. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.
    14. Stadje, M.A. & Pelsser, A., 2014. "Time-Consistent and Market-Consistent Evaluations (Revised version of 2012-086)," Discussion Paper 2014-002, Tilburg University, Center for Economic Research.
    15. A. Jobert & L. C. G. Rogers, 2008. "Valuations And Dynamic Convex Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 1-22, January.
    16. Xia Han & Qiuqi Wang & Ruodu Wang & Jianming Xia, 2021. "Cash-subadditive risk measures without quasi-convexity," Papers 2110.12198, arXiv.org, revised May 2024.
    17. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "Decision principles derived from risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 294-302, December.
    18. Acciaio, Beatrice & Svindland, Gregor, 2009. "Optimal risk sharing with different reference probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 426-433, June.
    19. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    20. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:44:y:2009:i:2:p:268-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.