IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00174770.html

Diversification, convex preferences and non-empty core in the Choquet expected utility model

Author

Listed:
  • Alain Chateauneuf

    (CERMSEM - CEntre de Recherche en Mathématiques, Statistique et Économie Mathématique - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Rose Anne Dana

    (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Jean-Marc Tallon

    (EUREQUA - Equipe Universitaire de Recherche en Economie Quantitative - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper explores risk-sharing and equilibrium in a general equilibrium set-up wherein agents are non-additive expected utility maximizers. We show that when agents have the same convex capacity, the set of Pareto-optima is independent of it and identical to the set of optima of an economy in which agents are expected utility maximizers and have same probability. Hence, optimal allocations are comonotone. This enables us to study the equilibrium set. When agents have different capacities, matters are much more complex (asin the vNM case). We give a general characterization and show how it simplifies when Pareto-optima are comonotone. We use this result to characterize Pareto-optima when agents have capacities that are the convex transform of some probability distribution. comonotonicity of Pareto-optima is also shown to be true in the two-state case if the intersection of the core of agents' capacities is non-empty; Pareto-optima may then be fully characterized in the two-agent, two-state case. This comonotonicity result does not generalize to more than two states as we show with a counter-example. Finally, if there is no-aggregate risk, we show thatnon-empty core intersection is enough to guarantee that optimal allocations are full-insurance allocation. This result does not require convexity of preferences.

Suggested Citation

  • Alain Chateauneuf & Rose Anne Dana & Jean-Marc Tallon, 2002. "Diversification, convex preferences and non-empty core in the Choquet expected utility model," Post-Print halshs-00174770, HAL.
  • Handle: RePEc:hal:journl:halshs-00174770
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00174770v1
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00174770v1/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jean-Marc Tallon & Alain Chateauneuf, 2002. "Diversification, convex preferences and non-empty core in the Choquet expected utility model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 19(3), pages 509-523.
    2. Edmond Malinvaud, 1974. "The Allocation of Individual Risks in Large Markets," International Economic Association Series, in: Jacques H. Drèze (ed.), Allocation under Uncertainty: Equilibrium and Optimality, chapter 8, pages 110-125, Palgrave Macmillan.
    3. Hong, Chew Soo & Karni, Edi & Safra, Zvi, 1987. "Risk aversion in the theory of expected utility with rank dependent probabilities," Journal of Economic Theory, Elsevier, vol. 42(2), pages 370-381, August.
    4. Tallon, Jean-Marc, 1998. "Do sunspots matter when agents are Choquet-expected-utility maximizers?," Journal of Economic Dynamics and Control, Elsevier, vol. 22(3), pages 357-368, March.
    5. Cass, David & Chichilnisky, Graciela & Wu, Ho-Mou, 1996. "Individual Risk and Mutual Insurance," Econometrica, Econometric Society, vol. 64(2), pages 333-341, March.
    6. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    7. MOSSIN, Jan, 1968. "Aspects of rational insurance purchasing," LIDAM Reprints CORE 23, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Dow, James & Werlang, Sergio Ribeiro da Costa, 1992. "Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio," Econometrica, Econometric Society, vol. 60(1), pages 197-204, January.
    9. Jean-Marc Tallon, 1997. "Risque microéconomique, aversion à l'incertitude et indétermination de l'équilibre," Annals of Economics and Statistics, GENES, issue 48, pages 211-226.
    10. Epstein, Larry G & Wang, Tan, 1994. "Intertemporal Asset Pricing Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 62(2), pages 283-322, March.
    11. repec:adr:anecst:y:1997:i:48:p:10 is not listed on IDEAS
    12. W. Hildenbrand & H. Sonnenschein (ed.), 1991. "Handbook of Mathematical Economics," Handbook of Mathematical Economics, Elsevier, edition 1, volume 4, number 4.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/5461 is not listed on IDEAS
    2. Chateauneuf, Alain & Dana, Rose-Anne & Tallon, Jean-Marc, 2000. "Optimal risk-sharing rules and equilibria with Choquet-expected-utility," Journal of Mathematical Economics, Elsevier, vol. 34(2), pages 191-214, October.
    3. Enrico G. De Giorgi & Ola Mahmoud, 2016. "Diversification preferences in the theory of choice," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(2), pages 143-174, November.
    4. Alain Chateauneuf & Luciano De Castro, 2011. "Ambiguity Aversion and Absence of Trade," Discussion Papers 1535, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    5. Assa, Hirbod & Zimper, Alexander, 2018. "Preferences over all random variables: Incompatibility of convexity and continuity," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 71-83.
    6. Kozhan, Roman & Salmon, Mark, 2009. "Uncertainty aversion in a heterogeneous agent model of foreign exchange rate formation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1106-1122, May.
    7. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    8. Trabelsi, Mohamed Ali, 2006. "Les nouveaux modèles de décision dans le risque et l’incertain : quel apport ? [The new models of decision under risk or uncertainty : What approach?]," MPRA Paper 25442, University Library of Munich, Germany.
    9. Louis R. Eeckhoudt & Roger J. A. Laeven, 2021. "Probability Premium and Attitude Towards Probability," Papers 2105.00054, arXiv.org.
    10. Dorian Jullien & Alexandre Truc, 2024. "Towards a history of behavioural and experimental economics in France," The European Journal of the History of Economic Thought, Taylor & Francis Journals, vol. 31(6), pages 998-1033, November.
    11. Antoine Billot & Sujoy Mukerji & Jean-Marc Tallon, 2020. "Market Allocations under Ambiguity: A Survey," Revue économique, Presses de Sciences-Po, vol. 71(2), pages 267-282.
    12. Alain Chateauneuf & Ghizlane Lakhnati, 2007. "From sure to strong diversification," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 32(3), pages 511-522, September.
    13. Eisei Ohtaki, 2016. "Optimality of the Friedman rule under ambiguity," Working Papers e103, Tokyo Center for Economic Research.
    14. Sujoy Mukerji & Jean-Marc Tallon, 2001. "Ambiguity Aversion and Incompleteness of Financial Markets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(4), pages 883-904.
    15. Sadowski, Philipp & Sarver, Todd, 2024. "Adaptive preferences: An evolutionary model of non-expected utility and ambiguity aversion," Journal of Economic Theory, Elsevier, vol. 218(C).
    16. Aurelien Baillon & Olivier L'Haridon & Laetitia Placido, 2011. "Ambiguity Models and the Machina Paradoxes," American Economic Review, American Economic Association, vol. 101(4), pages 1547-1560, June.
    17. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance without the nonnegativity constraint on indemnities," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 22-39.
    18. Chambers, Robert G. & Melkonyan, Tigran, 2009. "Smoothing preference kinks with information," Mathematical Social Sciences, Elsevier, vol. 58(2), pages 173-189, September.
    19. Chateauneuf, Alain & Ventura, Caroline, 2010. "The no-trade interval of Dow and Werlang: Some clarifications," Mathematical Social Sciences, Elsevier, vol. 59(1), pages 1-14, January.
    20. Eichberger, Jürgen & Kelsey, David, 2007. "Ambiguity," Sonderforschungsbereich 504 Publications 07-50, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
      • Eichberger, Jürgen & Kelsey, David, 2007. "Ambiguity," Papers 07-50, Sonderforschungsbreich 504.
    21. repec:dau:papers:123456789/5446 is not listed on IDEAS
    22. Moez Abouda & Elyess Farhoud, 2010. "Risk aversion and Relationships in model-free," Post-Print halshs-00492170, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00174770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.