IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v34y2000i2p191-214.html
   My bibliography  Save this article

Optimal risk-sharing rules and equilibria with Choquet-expected-utility

Author

Listed:
  • Chateauneuf, Alain
  • Dana, Rose-Anne
  • Tallon, Jean-Marc

Abstract

This paper explores risk-sharing and equilibrium in a general equilibrium set-up wherein agents are non-additive expected utility maximizers. We show that when agents have the same convex capacity, the set of Pareto-optima is independent of it and identical to the set of optima of an economy in which agents are expected utility maximizers and have same probability. Hence, optimal allocations are comonotone. This enables us to study the equilibrium set. When agents have different capacities, matters are much more complex (as in the vNM case). We give a general characterization and show how it simplifies when Pareto-optima are comonotone. We use this result to characterize Pareto-optima when agents have capacities that are the convex transform of some probability distribution. comonotonicity of Pareto-optima is also shown to be true in the two-state case if the intersection of the core of agents' capacities is non-empty; Pareto-optima may then be fully characterized in the two-agent, two-state case. This comonotonicity result does not generalize to more than two states as we show with a counter-example. Finally, if there is no-aggregate risk, we show that non-empty core intersection is enough to guarantee that optimal allocations are full-insurance allocation. This result does not require convexity of preferences.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Chateauneuf, Alain & Dana, Rose-Anne & Tallon, Jean-Marc, 2000. "Optimal risk-sharing rules and equilibria with Choquet-expected-utility," Journal of Mathematical Economics, Elsevier, vol. 34(2), pages 191-214, October.
  • Handle: RePEc:eee:mateco:v:34:y:2000:i:2:p:191-214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(00)00041-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sujoy Mukerji, 1996. "Understanding the nonadditive probability decision model (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(1), pages 23-46.
    2. Malinvaud, E, 1973. "Markets for an Exchange Economy with Individual Risks," Econometrica, Econometric Society, vol. 41(3), pages 383-410, May.
    3. Dow, James & Werlang, Sergio Ribeiro da Costa, 1992. "Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio," Econometrica, Econometric Society, vol. 60(1), pages 197-204, January.
    4. Antoine Billot & Alain Chateauneuf & Itzhak Gilboa & Jean-Marc Tallon, 2000. "Sharing Beliefs: Between Agreeing and Disagreeing," Econometrica, Econometric Society, vol. 68(3), pages 685-694, May.
    5. Tallon, J.-M. & Chateauneuf, A., 1998. "Diversification, Convex Preferences and Non-Empty Core," Papiers d'Economie Mathématique et Applications 98.32, Université Panthéon-Sorbonne (Paris 1).
    6. Epstein, Larry G & Wang, Tan, 1994. "Intertemporal Asset Pricing Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 62(2), pages 283-322, March.
    7. Malinvaud, E., 1972. "The allocation of individual risks in large markets," Journal of Economic Theory, Elsevier, vol. 4(2), pages 312-328, April.
    8. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    9. Tallon, Jean-Marc, 1998. "Do sunspots matter when agents are Choquet-expected-utility maximizers?," Journal of Economic Dynamics and Control, Elsevier, vol. 22(3), pages 357-368, March.
    10. repec:adr:anecst:y:1997:i:48:p:10 is not listed on IDEAS
    11. Cass, David & Chichilnisky, Graciela & Wu, Ho-Mou, 1996. "Individual Risk and Mutual Insurance," Econometrica, Econometric Society, vol. 64(2), pages 333-341, March.
    12. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    13. Karni, Edi & Schmeidler, David, 1991. "Utility theory with uncertainty," Handbook of Mathematical Economics,in: W. Hildenbrand & H. Sonnenschein (ed.), Handbook of Mathematical Economics, edition 1, volume 4, chapter 33, pages 1763-1831 Elsevier.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:34:y:2000:i:2:p:191-214. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.