IDEAS home Printed from
   My bibliography  Save this paper

Optimal risk-sharing rules and equilibria with Choquet-expected-utility


  • Alain Chateauneuf

    (CERMSEM - CEntre de Recherche en Mathématiques, Statistique et Économie Mathématique - UP1 - Université Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Rose Anne Dana

    (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris-Dauphine - CNRS - Centre National de la Recherche Scientifique)

  • Jean-Marc Tallon

    () (EUREQUA - Equipe Universitaire de Recherche en Economie Quantitative - UP1 - Université Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)


This paper explores risk-sharing and equilibrium in a general equilibrium set-up wherein agents are non-additive expected utility maximizers. We show that when agents have the same convex capacity, the set of Pareto-optima is independent of it and identical to the set of optima of an economy in which agents are expected utility maximizers and have same probability. Hence, optimal allocations are comonotone. This enables us to study the equilibrium set. When agents have different capacities, matters are much more complex (as in the vNM case). We give a general characterization and show how it simplifies when Pareto-optima are comonotone. We use this result to characterize Pareto-optima when agents have capacities that are the convex transform of some probability distribution. comonotonicity of Pareto-optima is also shown to be true in the two-state case if the intersection of the core of agents' capacities is non-empty; Pareto-optima may then be fully characterized in the two-agent, two-state case. This comonotonicity result does not generalize to more than two states as we show with a counter-example. Finally, if there is no-aggregate risk, we show that non-empty core intersection is enough to guarantee that optimal allocations are full-insurance allocation. This result does not require convexity of preferences.

Suggested Citation

  • Alain Chateauneuf & Rose Anne Dana & Jean-Marc Tallon, 2000. "Optimal risk-sharing rules and equilibria with Choquet-expected-utility," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00451997, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00451997
    DOI: 10.1016/S0304-4068(00)00041-0
    Note: View the original document on HAL open archive server:

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Sujoy Mukerji, 1996. "Understanding the nonadditive probability decision model (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(1), pages 23-46.
    2. Antoine Billot & Alain Chateauneuf & Itzhak Gilboa & Jean-Marc Tallon, 2000. "Sharing Beliefs: Between Agreeing and Disagreeing," Econometrica, Econometric Society, vol. 68(3), pages 685-694, May.
    3. Tallon, J.-M. & Chateauneuf, A., 1998. "Diversification, Convex Preferences and Non-Empty Core," Papiers d'Economie Mathématique et Applications 98.32, Université Panthéon-Sorbonne (Paris 1).
    4. Malinvaud, E., 1972. "The allocation of individual risks in large markets," Journal of Economic Theory, Elsevier, vol. 4(2), pages 312-328, April.
    5. Tallon, Jean-Marc, 1998. "Do sunspots matter when agents are Choquet-expected-utility maximizers?," Journal of Economic Dynamics and Control, Elsevier, vol. 22(3), pages 357-368, March.
    6. Cass, David & Chichilnisky, Graciela & Wu, Ho-Mou, 1996. "Individual Risk and Mutual Insurance," Econometrica, Econometric Society, vol. 64(2), pages 333-341, March.
    7. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    8. Malinvaud, E, 1973. "Markets for an Exchange Economy with Individual Risks," Econometrica, Econometric Society, vol. 41(3), pages 383-410, May.
    9. Dow, James & Werlang, Sergio Ribeiro da Costa, 1992. "Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio," Econometrica, Econometric Society, vol. 60(1), pages 197-204, January.
    10. Epstein, Larry G & Wang, Tan, 1994. "Intertemporal Asset Pricing Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 62(2), pages 283-322, March.
    11. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    12. repec:adr:anecst:y:1997:i:48:p:10 is not listed on IDEAS
    13. Karni, Edi & Schmeidler, David, 1991. "Utility theory with uncertainty," Handbook of Mathematical Economics,in: W. Hildenbrand & H. Sonnenschein (ed.), Handbook of Mathematical Economics, edition 1, volume 4, chapter 33, pages 1763-1831 Elsevier.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Choquet expected utility; comonotonicity; risk-sharing; equilibrium;

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00451997. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.