IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20040030.html
   My bibliography  Save this paper

A Comonotonic Image of Independence for Additive Risk Measures

Author

Listed:
  • Marc J. Goovaerts

    (Faculty of Economics and Econometrics, Universiteit van Amsterdam, and Cath. University of Leuven, Center for Risk and Insurance Studies)

  • Rob Kaas

    (Faculty of Economics and Econometrics, Universiteit van Amsterdam)

  • Roger J.A. Laeven

    (Faculty of Economics and Econometrics, Universiteit van Amsterdam)

  • Qihe Tang

    (Faculty of Economics and Econometrics, Universiteit van Amsterdam)

Abstract

This paper presents a new axiomatic characterization of risk measures that are additive for independent random variables. In contrast to previous work, we include an axiom that guarantees monotonicity of the risk measure. Furthermore, the axiom of additivity for independent random variables is related to an axiom of additivity for comonotonic random variables. The risk measure characterized can be regarded as a mixed exponential premium.

Suggested Citation

  • Marc J. Goovaerts & Rob Kaas & Roger J.A. Laeven & Qihe Tang, 2004. "A Comonotonic Image of Independence for Additive Risk Measures," Tinbergen Institute Discussion Papers 04-030/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20040030
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/04030.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Wu, Xianyi & Wang, Jinglong, 2003. "On Characterization of Distortion Premium Principle," ASTIN Bulletin, Cambridge University Press, vol. 33(1), pages 1-10, May.
    3. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    4. Gerber, Hans U., 1974. "On Additive Premium Calculation Principles," ASTIN Bulletin, Cambridge University Press, vol. 7(3), pages 215-222, March.
    5. J. Dhaene & S. Vanduffel & M. Goovaerts, 2007. "Comonotonicity," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(2), pages 265-278.
    6. Van Heerwaarden, A. E. & Kaas, R. & Goovaerts, M. J., 1989. "Properties of the Esscher premium calculation principle," Insurance: Mathematics and Economics, Elsevier, vol. 8(4), pages 261-267, December.
    7. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    8. Denuit, Michel, 2001. "Laplace transform ordering of actuarial quantities," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 83-102, August.
    9. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    10. Goovaerts, Marc J. & Kaas, Rob & Dhaene, Jan & Tang, Qihe, 2003. "A Unified Approach to Generate Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 173-191, November.
    11. Gerber, Hans U., 1981. "The Esscher Premium Principle: A Criticism. Comment," ASTIN Bulletin, Cambridge University Press, vol. 12(2), pages 139-140, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goovaerts, Marc J. & Kaas, Rob & Dhaene, Jan & Tang, Qihe, 2004. "Some new classes of consistent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 505-516, June.
    2. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "Decision principles derived from risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 294-302, December.
    3. Andreas Tsanakas & Evangelia Desli, 2005. "Measurement and Pricing of Risk in Insurance Markets," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1653-1668, December.
    4. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2011. "Worst case risk measurement: Back to the future?," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 380-392.
    5. Puccetti, Giovanni & Scarsini, Marco, 2010. "Multivariate comonotonicity," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 291-304, January.
    6. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    7. J. Marin-Solano (Universitat de Barcelona) & O. Roch (Universitat de Barcelona) & J. Dhaene (Katholieke Univerisiteit Leuven) & C. Ribas (Universitat de Barcelona) & M. Bosch-Princep (Universitat de B, 2009. "Buy-and-Hold Strategies and Comonotonic Approximations," Working Papers in Economics 213, Universitat de Barcelona. Espai de Recerca en Economia.
    8. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    9. André Lapied & Robert Kast, 2005. "Updating Choquet valuation and discounting information arrivals," Working Papers 05-09, LAMETA, Universtiy of Montpellier, revised Jan 2005.
    10. Goovaerts, Marc & Linders, Daniël & Van Weert, Koen & Tank, Fatih, 2012. "On the interplay between distortion, mean value and Haezendonck–Goovaerts risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 10-18.
    11. Chuancun Yin & Dan Zhu, 2016. "Sharp convex bounds on the aggregate sums--An alternative proof," Papers 1603.05373, arXiv.org, revised May 2016.
    12. Tiantian Mao & Jun Cai, 2018. "Risk measures based on behavioural economics theory," Finance and Stochastics, Springer, vol. 22(2), pages 367-393, April.
    13. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    14. Roberto Cominetti & Alfredo Torrico, 2016. "Additive Consistency of Risk Measures and Its Application to Risk-Averse Routing in Networks," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1510-1521, November.
    15. Jean-Gabriel Lauzier & Liyuan Lin & Ruodu Wang, 2023. "Pairwise counter-monotonicity," Papers 2302.11701, arXiv.org, revised May 2023.
    16. Wu, Xianyi & Zhou, Xian, 2006. "A new characterization of distortion premiums via countable additivity for comonotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 324-334, April.
    17. He, Junnan & Tang, Qihe & Zhang, Huan, 2016. "Risk reducers in convex order," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 80-88.
    18. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    19. Sinem Bas & Philippe Bich & Alain Chateauneuf, 2021. "Multidimensional inequalities and generalized quantile functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 375-409, March.
    20. Antonella Campana & Paola Ferretti, 2005. "Distortion Risk Measures and Discrete Risks," Game Theory and Information 0510013, University Library of Munich, Germany.

    More about this item

    Keywords

    Risk measures; Additivity; Exponential order; Laplace transform order; Esscher transform; Comonotonicity;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20040030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.