IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v8y2020i3p54-d409459.html
   My bibliography  Save this article

Robust Optimization-Based Commodity Portfolio Performance

Author

Listed:
  • Ramesh Adhikari

    (School of Business, Humboldt State University, Arcata, CA 95521, USA)

  • Kyle J. Putnam

    (School of Business, Linfield University, McMinnville, OR 97128, USA)

  • Humnath Panta

    (School of Business, Humboldt State University, Arcata, CA 95521, USA)

Abstract

This paper examines the performance of a naïve equally weighted buy-and-hold portfolio and optimization-based commodity futures portfolios for various lookback and holding periods using data from January 1986 to December 2018. The application of Monte Carlo simulation-based mean-variance and conditional value-at-risk optimization techniques are used to construct the robust commodity futures portfolios. This paper documents the benefits of applying a sophisticated, robust optimization technique to construct commodity futures portfolios. We find that a 12-month lookback period contains the most useful information in constructing optimization-based portfolios, and a 1-month holding period yields the highest returns among all the holding periods examined in the paper. We also find that an optimized conditional value-at-risk portfolio using a 12-month lookback period outperforms an optimized mean-variance portfolio using the same lookback period. Our findings highlight the advantages of using robust optimization for portfolio formation in the presence of return uncertainty in the commodity futures markets. The results also highlight the practical importance of choosing the appropriate lookback and holding period when using robust optimization in the commodity portfolio formation process.

Suggested Citation

  • Ramesh Adhikari & Kyle J. Putnam & Humnath Panta, 2020. "Robust Optimization-Based Commodity Portfolio Performance," IJFS, MDPI, vol. 8(3), pages 1-16, September.
  • Handle: RePEc:gam:jijfss:v:8:y:2020:i:3:p:54-:d:409459
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/8/3/54/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/8/3/54/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    3. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2020. "Does sophistication of the weighting scheme enhance the performance of long-short commodity portfolios?," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 164-180.
    4. Huang, Xiaoxia & Yang, Tingting, 2020. "How does background risk affect portfolio choice: An analysis based on uncertain mean-variance model with background risk," Journal of Banking & Finance, Elsevier, vol. 111(C).
    5. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    6. Kim, Jang Ho & Kim, Woo Chang & Fabozzi, Frank J., 2013. "Composition of robust equity portfolios," Finance Research Letters, Elsevier, vol. 10(2), pages 72-81.
    7. Robert Elliott & Tak Siu, 2010. "On risk minimizing portfolios under a Markovian regime-switching Black-Scholes economy," Annals of Operations Research, Springer, vol. 176(1), pages 271-291, April.
    8. Zakamulin, Valeriy, 2017. "Superiority of optimized portfolios to naive diversification: Fact or fiction?," Finance Research Letters, Elsevier, vol. 22(C), pages 122-128.
    9. Zhang, Jinqing & Jin, Zeyu & An, Yunbi, 2017. "Dynamic portfolio optimization with ambiguity aversion," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 95-109.
    10. Adhikari, Ramesh & Putnam, Kyle J., 2020. "Comovement in the commodity futures markets: An analysis of the energy, grains, and livestock sectors," Journal of Commodity Markets, Elsevier, vol. 18(C).
    11. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2009. "Constructing Risk Measures from Uncertainty Sets," Operations Research, INFORMS, vol. 57(5), pages 1129-1141, October.
    12. Green, Richard C & Hollifield, Burton, 1992. "When Will Mean-Variance Efficient Portfolios Be Well Diversified?," Journal of Finance, American Finance Association, vol. 47(5), pages 1785-1809, December.
    13. Sebastián Ceria & Robert A Stubbs, 2006. "Incorporating estimation errors into portfolio selection: Robust portfolio construction," Journal of Asset Management, Palgrave Macmillan, vol. 7(2), pages 109-127, July.
    14. Clifford S. Asness & Tobias J. Moskowitz & Lasse Heje Pedersen, 2013. "Value and Momentum Everywhere," Journal of Finance, American Finance Association, vol. 68(3), pages 929-985, June.
    15. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    16. Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
    17. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    18. Bi, Junna & Jin, Hanqing & Meng, Qingbin, 2018. "Behavioral mean-variance portfolio selection," European Journal of Operational Research, Elsevier, vol. 271(2), pages 644-663.
    19. Huo, Lijuan & Kim, Tae-Hwan & Kim, Yunmi, 2012. "Robust estimation of covariance and its application to portfolio optimization," Finance Research Letters, Elsevier, vol. 9(3), pages 121-134.
    20. Post, Thierry & Karabatı, Selçuk & Arvanitis, Stelios, 2019. "Robust optimization of forecast combinations," International Journal of Forecasting, Elsevier, vol. 35(3), pages 910-926.
    21. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    22. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    23. Shen, Ruijun & Zhang, Shuzhong, 2008. "Robust portfolio selection based on a multi-stage scenario tree," European Journal of Operational Research, Elsevier, vol. 191(3), pages 864-887, December.
    24. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    25. Miffre, Joelle & Rallis, Georgios, 2007. "Momentum strategies in commodity futures markets," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1863-1886, June.
    26. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    27. Marta Szymanowska & Frans Roon & Theo Nijman & Rob Goorbergh, 2014. "An Anatomy of Commodity Futures Risk Premia," Journal of Finance, American Finance Association, vol. 69(1), pages 453-482, February.
    28. Geetesh Bhardwaj & Gary Gorton & Geert Rouwenhorst, 2015. "Facts and Fantasies about Commodity Futures Ten Years Later," NBER Working Papers 21243, National Bureau of Economic Research, Inc.
    29. Bernd Scherer, 2007. "Can robust portfolio optimisation help to build better portfolios?," Journal of Asset Management, Palgrave Macmillan, vol. 7(6), pages 374-387, March.
    30. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    31. Grauer, Robert R. & Shen, Frederick C., 2000. "Do constraints improve portfolio performance?," Journal of Banking & Finance, Elsevier, vol. 24(8), pages 1253-1274, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anja Vinzelberg & Benjamin R. Auer, 2022. "Unprofitability of food market investments," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(7), pages 2887-2910, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    2. Jang Ho Kim & Woo Chang Kim & Do-Gyun Kwon & Frank J. Fabozzi, 2018. "Robust equity portfolio performance," Annals of Operations Research, Springer, vol. 266(1), pages 293-312, July.
    3. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    4. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    5. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    6. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    7. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
    8. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    9. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    10. Zhilin Kang & Zhongfei Li, 2018. "An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 169-195, April.
    11. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    12. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    13. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
    14. Anja Vinzelberg & Benjamin R. Auer, 2022. "Unprofitability of food market investments," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(7), pages 2887-2910, October.
    15. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    16. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, January.
    17. Miffre, Joëlle, 2016. "Long-short commodity investing: A review of the literature," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 3-13.
    18. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2020. "Does sophistication of the weighting scheme enhance the performance of long-short commodity portfolios?," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 164-180.
    19. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    20. Guillaume Coqueret, 2016. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02088097, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:8:y:2020:i:3:p:54-:d:409459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.