IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v23y2009i1p107-116.html
   My bibliography  Save this article

Portfolio optimization with CVaR under VG process

Author

Listed:
  • Yu, Jinping
  • Yang, Xiaofeng
  • Li, Shenghong

Abstract

Formal portfolio optimization methodologies describe the dynamics of financial instruments price with Gaussian Copula (GC). Without considering the skewness and kurtosis of assets return rate, optimization with GC underestimate the optimal CVaR of portfolio. In the present paper, we develop the approach for portfolio optimization by introducing Lévy processes. It focuses on describing the dynamics of assets' log price with Variance Gamma copula (VGC) rather than GC. A case study for three Indexes of Chinese Stock Market is performed. On application purpose, we calculate the best hedge positions of Shanghai Index (SHI), Shenzhen Index (SZI) and Small Cap Index (SCI) with the performance function CVaR under VG model. It can be combined with Monte Carlo Simulation and nonlinear programming techniques. This framework is suitable for any investment companies.

Suggested Citation

  • Yu, Jinping & Yang, Xiaofeng & Li, Shenghong, 2009. "Portfolio optimization with CVaR under VG process," Research in International Business and Finance, Elsevier, vol. 23(1), pages 107-116, January.
  • Handle: RePEc:eee:riibaf:v:23:y:2009:i:1:p:107-116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275-5319(08)00040-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    3. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    4. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    5. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    6. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    7. Magill, Michael J. P. & Constantinides, George M., 1976. "Portfolio selection with transactions costs," Journal of Economic Theory, Elsevier, vol. 13(2), pages 245-263, October.
    8. Carlo Acerbi & Claudio Nordio & Carlo Sirtori, 2001. "Expected Shortfall as a Tool for Financial Risk Management," Papers cond-mat/0102304, arXiv.org.
    9. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    10. Hong Liu & Mark Loewenstein, 2002. "Optimal Portfolio Selection with Transaction Costs and Finite Horizons," Review of Financial Studies, Society for Financial Studies, vol. 15(3), pages 805-835.
    11. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:23:y:2009:i:1:p:107-116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.