IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i8p2501-2512.html
   My bibliography  Save this article

Benchmark testing of algorithms for very robust regression: FS, LMS and LTS

Author

Listed:
  • Torti, Francesca
  • Perrotta, Domenico
  • Atkinson, Anthony C.
  • Riani, Marco

Abstract

The methods of very robust regression resist up to 50% of outliers. The algorithms for very robust regression rely on selecting numerous subsamples of the data. New algorithms for LMS and LTS estimators that have increased computational efficiency due to improved combinatorial sampling are proposed. These and other publicly available algorithms are compared for outlier detection. Timings and estimator quality are also considered. An algorithm using the forward search (FS) has the best properties for both size and power of the outlier tests.

Suggested Citation

  • Torti, Francesca & Perrotta, Domenico & Atkinson, Anthony C. & Riani, Marco, 2012. "Benchmark testing of algorithms for very robust regression: FS, LMS and LTS," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2501-2512.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:8:p:2501-2512
    DOI: 10.1016/j.csda.2012.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312000680
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    2. Nunkesser, Robin & Morell, Oliver, 2010. "An evolutionary algorithm for robust regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3242-3248, December.
    3. Atkinson, A.C. & Riani, M., 2007. "Exploratory tools for clustering multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 272-285, September.
    4. García-Escudero, L.A. & Gordaliza, A. & Mayo-Iscar, A. & San Martín, R., 2010. "Robust clusterwise linear regression through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3057-3069, December.
    5. Flores, Salvador, 2010. "On the efficient computation of robust regression estimators," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3044-3056, December.
    6. Mastronardi, Nicola & O'Leary, Dianne P., 2007. "Fast robust regression algorithms for problems with Toeplitz structure," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 1119-1131, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flores, Salvador, 2015. "SOCP relaxation bounds for the optimal subset selection problem applied to robust linear regression," European Journal of Operational Research, Elsevier, vol. 246(1), pages 44-50.
    2. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    3. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    4. Baishuai Zuo & Chuancun Yin, 2022. "Multivariate doubly truncated moments for generalized skew-elliptical distributions with application to multivariate tail conditional risk measures," Papers 2203.00839, arXiv.org.
    5. Eugster, Manuel J.A. & Leisch, Friedrich & Strobl, Carolin, 2014. "(Psycho-)analysis of benchmark experiments: A formal framework for investigating the relationship between data sets and learning algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 986-1000.
    6. Greco, Luca & Pacillo, Simona & Maresca, Piera, 2023. "An impartial trimming algorithm for robust circle fitting," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    7. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.
    8. Christian Garciga & Randal J. Verbrugge, 2020. "A New Tool for Robust Estimation and Identification of Unusual Data Points," Working Papers 20-08, Federal Reserve Bank of Cleveland.
    9. Maria Teresa Alonso & Carlo Ferigato & Deimos Ibanez Segura & Domenico Perrotta & Adria Rovira-Garcia & Emmanuele Sordini, 2021. "Analysis of ‘Pre-Fit’ Datasets of gLAB by Robust Statistical Techniques," Stats, MDPI, vol. 4(2), pages 1-19, May.
    10. Garciga, Christian & Verbrugge, Randal, 2021. "Robust covariance matrix estimation and identification of unusual data points: New tools," Research in Economics, Elsevier, vol. 75(2), pages 176-202.
    11. Mount, David M. & Netanyahu, Nathan S. & Piatko, Christine D. & Wu, Angela Y. & Silverman, Ruth, 2016. "A practical approximation algorithm for the LTS estimator," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 148-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torti, Francesca & Corbellini, Aldo & Atkinson, Anthony C., 2021. "fsdaSAS: a package for robust regression for very large datasets including the batch forward search," LSE Research Online Documents on Economics 109895, London School of Economics and Political Science, LSE Library.
    2. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    3. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    4. Francesca Torti & Aldo Corbellini & Anthony C. Atkinson, 2021. "fsdaSAS: A Package for Robust Regression for Very Large Datasets Including the Batch Forward Search," Stats, MDPI, vol. 4(2), pages 1-21, April.
    5. Atkinson, Anthony C. & Riani, Marco & Torti, Francesca, 2016. "Robust methods for heteroskedastic regression," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 209-222.
    6. Francesca Torti & Domenico Perrotta & Marco Riani & Andrea Cerioli, 2019. "Assessing trimming methodologies for clustering linear regression data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 227-257, March.
    7. Andrea Cerioli & Marco Riani & Anthony C. Atkinson & Aldo Corbellini, 2018. "The power of monitoring: how to make the most of a contaminated multivariate sample," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 559-587, December.
    8. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    9. Anthony C. Atkinson & Marco Riani & Andrea Cerioli, 2018. "Cluster detection and clustering with random start forward searches," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 777-798, April.
    10. Søren Johansen & Lukasz Gatarek, 2014. "Optimal hedging with the cointegrated vector autoregressive model," CREATES Research Papers 2014-40, Department of Economics and Business Economics, Aarhus University.
    11. Anthony C. Atkinson & Aldo Corbellini & Marco Riani, 2017. "Robust Bayesian regression with the forward search: theory and data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 869-886, December.
    12. Wu, Qiang & Yao, Weixin, 2016. "Mixtures of quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 162-176.
    13. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    14. Anthony C. Atkinson & Marco Riani & Aldo Corbellini, 2020. "The analysis of transformations for profit‐and‐loss data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(2), pages 251-275, April.
    15. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    16. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    17. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    18. Domenico Perrotta & Marco Riani & Francesca Torti, 2009. "New robust dynamic plots for regression mixture detection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 263-279, December.
    19. Adil M. Bagirov & Julien Ugon & Hijran G. Mirzayeva, 2015. "Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 755-780, March.
    20. Menjoge, Rajiv S. & Welsch, Roy E., 2010. "A diagnostic method for simultaneous feature selection and outlier identification in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3181-3193, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:8:p:2501-2512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.