IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Dependence Uncertainty Bounds for the Expectile of a Portfolio

Listed author(s):
  • Edgars Jakobsons


    (RiskLab, Department of Mathematics, ETH Zurich, 8092 Zürich, Switzerland)

  • Steven Vanduffel


    (Faculty of Economics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Bruxelles, Belgium)

We study upper and lower bounds on the expectile risk measure of risky portfolios when the joint distribution of the risky components is not fully specified. First, we summarize methods for obtaining bounds when only the marginal distributions of the components are known, but not their interdependence (unconstrained bounds). In particular, we provide the best-possible upper bound and the best-possible lower bound (under some conditions), as well as numerical procedures to compute them. We also derive simple analytic bounds that appear adequate in various situations of interest. Second, we study bounds when some information on interdependence is available (constrained bounds). When the variance of the portfolio is known, a simple-to-compute upper bound is provided, and we illustrate that it may significantly improve the unconstrained upper bound. We also show that the unconstrained lower bound cannot be readily improved using variance information. Next, we derive improved bounds when the bivariate distributions of each of the risky components and a risk factor are known. When the factor induces a positive dependence among the components, it is typically possible to improve the unconstrained lower bound. Finally, the unconstrained dependence uncertainty spreads of expected shortfall, value-at-risk and the expectile are compared.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

Article provided by MDPI, Open Access Journal in its journal Risks.

Volume (Year): 3 (2015)
Issue (Month): 4 (December)
Pages: 1-25

in new window

Handle: RePEc:gam:jrisks:v:3:y:2015:i:4:p:599-623:d:60385
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
  2. Bignozzi, Valeria & Puccetti, Giovanni & Rüschendorf, Ludger, 2015. "Reducing model risk via positive and negative dependence assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 17-26.
  3. Kuan, Chung-Ming & Yeh, Jin-Huei & Hsu, Yu-Chin, 2009. "Assessing value at risk with CARE, the Conditional Autoregressive Expectile models," Journal of Econometrics, Elsevier, vol. 150(2), pages 261-270, June.
  4. Bernard, Carole & Vanduffel, Steven, 2015. "A new approach to assessing model risk in high dimensions," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 166-178.
  5. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
  6. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
  7. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
  8. Freddy Delbaen, 2013. "A Remark on the Structure of Expectiles," Papers 1307.5881,
  9. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
  10. Wang, Bin & Wang, Ruodu, 2011. "The complete mixability and convex minimization problems with monotone marginal densities," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1344-1360, November.
  11. Fabio Bellini & Valeria Bignozzi, 2015. "On elicitable risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 725-733, May.
  12. Yao, Qiwei & Tong, Howell, 1996. "Asymmetric least squares regression estimation: a nonparametric approach," LSE Research Online Documents on Economics 19423, London School of Economics and Political Science, LSE Library.
  13. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
  14. van Heerwaarden, A. E. & Kaas, R., 1992. "The Dutch premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 11(2), pages 129-133, August.
  15. Puccetti, Giovanni, 2013. "Sharp bounds on the expected shortfall for a sum of dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1227-1232.
  16. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, Open Access Journal, vol. 2(1), pages 1-24, February.
  17. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
  18. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  19. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
  20. Bellini, Fabio, 2012. "Isotonicity properties of generalized quantiles," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2017-2024.
  21. Bauerle, Nicole & Muller, Alfred, 2006. "Stochastic orders and risk measures: Consistency and bounds," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 132-148, February.
  22. Bernard Carole & Vanduffel Steven, 2015. "Quantile of a Mixture with Application to Model Risk Assessment," Dependence Modeling, De Gruyter Open, vol. 3(1), pages 1-10, October.
  23. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645,, revised Apr 2015.
  24. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
  25. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(2), pages 231-252, Spring.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:3:y:2015:i:4:p:599-623:d:60385. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.