IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v34y2017i1-2p13-31n3.html
   My bibliography  Save this article

Improved algorithms for computing worst Value-at-Risk

Author

Listed:
  • Hofert Marius

    (Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada)

  • Memartoluie Amir

    (Cheriton School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada)

  • Saunders David

    (Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada)

  • Wirjanto Tony

    (Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada)

Abstract

Numerical challenges inherent in algorithms for computing worst Value-at-Risk in homogeneous portfolios are identified and solutions as well as words of warning concerning their implementation are provided. Furthermore, both conceptual and computational improvements to the Rearrangement Algorithm for approximating worst Value-at-Risk for portfolios with arbitrary marginal loss distributions are given. In particular, a novel Adaptive Rearrangement Algorithm is introduced and investigated. These algorithms are implemented using the R package qrmtools and may be of interest in any context in which it is required to find columnwise permutations of a matrix such that the minimal (maximal) row sum is maximized (minimized).

Suggested Citation

  • Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
  • Handle: RePEc:bpj:strimo:v:34:y:2017:i:1-2:p:13-31:n:3
    DOI: 10.1515/strm-2015-0028
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/strm-2015-0028
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/strm-2015-0028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruodu Wang & Liang Peng & Jingping Yang, 2013. "Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities," Finance and Stochastics, Springer, vol. 17(2), pages 395-417, April.
    2. E. G. Coffman & M. Yannakakis, 1984. "Permuting Elements Within Columns of a Matrix in Order to Minimize Maximum Row Sum," Mathematics of Operations Research, INFORMS, vol. 9(3), pages 384-390, August.
    3. Bignozzi, Valeria & Puccetti, Giovanni & Rüschendorf, Ludger, 2015. "Reducing model risk via positive and negative dependence assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 17-26.
    4. Bernard, Carole & Vanduffel, Steven, 2015. "A new approach to assessing model risk in high dimensions," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 166-178.
    5. Paul Embrechts & Marius Hofert, 2013. "A note on generalized inverses," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 423-432, June.
    6. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    7. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
    8. Hofert Marius & Wüthrich Mario V., 2012. "Statistical Review of Nuclear Power Accidents," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 7(1), pages 1-20, December.
    9. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    10. Bernard, Carole & Jiang, Xiao & Wang, Ruodu, 2014. "Risk aggregation with dependence uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 93-108.
    11. Paul Embrechts & Giovanni Puccetti, 2006. "Bounds for Functions of Dependent Risks," Finance and Stochastics, Springer, vol. 10(3), pages 341-352, September.
    12. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    13. Bernard Carole & Vanduffel Steven, 2015. "Quantile of a Mixture with Application to Model Risk Assessment," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-10, October.
    14. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Jing Yao, 2017. "How robust is the value-at-risk of credit risk portfolios?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 507-534, May.
    15. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marius Hofert, 2024. "A Basic Asymptotic Test for Value-at-Risk Subadditivity," Risks, MDPI, vol. 12(12), pages 1-12, December.
    2. Marius Hofert, 2020. "Implementing the Rearrangement Algorithm: An Example from Computational Risk Management," Risks, MDPI, vol. 8(2), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    2. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    3. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    4. Jose Blanchet & Henry Lam & Yang Liu & Ruodu Wang, 2020. "Convolution Bounds on Quantile Aggregation," Papers 2007.09320, arXiv.org, revised Sep 2024.
    5. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    6. Takaaki Koike & Liyuan Lin & Ruodu Wang, 2022. "Joint mixability and notions of negative dependence," Papers 2204.11438, arXiv.org, revised Jan 2024.
    7. Rüschendorf, L., 2019. "Analysis of risk bounds in partially specified additive factor models," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 115-121.
    8. Jonathan Ansari & Eva Lutkebohmert, 2024. "Robust Bernoulli mixture models for credit portfolio risk," Papers 2411.11522, arXiv.org.
    9. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    10. Giovanni Puccetti & Pietro Rigo & Bin Wang & Ruodu Wang, 2019. "Centers of probability measures without the mean," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1482-1501, September.
    11. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.
    12. Asimit, Alexandru V. & Gerrard, Russell, 2016. "On the worst and least possible asymptotic dependence," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 218-234.
    13. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    14. Ruodu Wang & Zuo Quan Xu & Xun Yu Zhou, 2019. "Dual utilities on risk aggregation under dependence uncertainty," Finance and Stochastics, Springer, vol. 23(4), pages 1025-1048, October.
    15. Xia Han & Peng Liu, 2024. "Robust Lambda-quantiles and extreme probabilities," Papers 2406.13539, arXiv.org.
    16. Carole Bernard & Don McLeish, 2016. "Algorithms for Finding Copulas Minimizing Convex Functions of Sums," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-26, October.
    17. Corrado De Vecchi & Max Nendel & Jan Streicher, 2024. "Upper Comonotonicity and Risk Aggregation under Dependence Uncertainty," Papers 2406.19242, arXiv.org.
    18. Wang, Bin & Wang, Ruodu, 2015. "Extreme negative dependence and risk aggregation," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 12-25.
    19. Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
    20. Yichun Chi & Zuo Quan Xu & Sheng Chao Zhuang, 2022. "Distributionally Robust Goal-Reaching Optimization in the Presence of Background Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(3), pages 351-382, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:34:y:2017:i:1-2:p:13-31:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.