IDEAS home Printed from https://ideas.repec.org/a/bla/jrinsu/v83y2016i3p735-776.html
   My bibliography  Save this article

An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates

Author

Listed:
  • Valérie Chavez-Demoulin
  • Paul Embrechts
  • Marius Hofert

Abstract

No abstract is available for this item.

Suggested Citation

  • Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
  • Handle: RePEc:bla:jrinsu:v:83:y:2016:i:3:p:735-776
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jori.12059
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2551-2569, August.
    2. Cummins, J. David & Lewis, Christopher M. & Wei, Ran, 2006. "The market value impact of operational loss events for US banks and insurers," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2605-2634, October.
    3. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
    4. William D. Nordhaus, 2009. "An Analysis of the Dismal Theorem," Cowles Foundation Discussion Papers 1686, Cowles Foundation for Research in Economics, Yale University.
    5. Dahen, Hela & Dionne, Georges, 2010. "Scaling models for the severity and frequency of external operational loss data," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1484-1496, July.
    6. Ganegoda, Amandha & Evans, John, 2013. "A scaling model for severity of operational losses using generalized additive models for location scale and shape (GAMLSS)," Annals of Actuarial Science, Cambridge University Press, vol. 7(1), pages 61-100, March.
    7. Robert Jarrow, 2017. "Operational Risk," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 8, pages 69-70, World Scientific Publishing Co. Pte. Ltd..
    8. Patrick de Fontnouvelle & Eric Rosengren & John Jordan, 2007. "Implications of Alternative Operational Risk Modeling Techniques," NBER Chapters, in: The Risks of Financial Institutions, pages 475-505, National Bureau of Economic Research, Inc.
    9. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    10. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    11. Ibragimov, Rustam & Walden, Johan, 2008. "Portfolio diversification under local and moderate deviations from power laws," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 594-599, April.
    12. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    13. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    14. V. Chavez‐Demoulin & P. Embrechts, 2004. "Smooth Extremal Models in Finance and Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(2), pages 183-199, June.
    15. Robert Jarrow & Jeff Oxman & Yildiray Yildirim, 2010. "The cost of operational risk loss insurance," Review of Derivatives Research, Springer, vol. 13(3), pages 273-295, October.
    16. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    17. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    18. Pavel V. Shevchenko & Grigory Temnov, 2009. "Modeling operational risk data reported above a time-varying threshold," Papers 0904.4075, arXiv.org, revised Jul 2009.
    19. Kabir Dutta & Jason Perry, 2006. "A tale of tails: an empirical analysis of loss distribution models for estimating operational risk capital," Working Papers 06-13, Federal Reserve Bank of Boston.
    20. Walden, Johan & Ibragimov, Rustam, 2008. "Portfolio Diversification under Local and Moderate Deviations from Power Laws," Scholarly Articles 2640586, Harvard University Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    2. Chernobai, Anna & Yildirim, Yildiray, 2008. "The dynamics of operational loss clustering," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2655-2666, December.
    3. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2022. "An unexpected stochastic dominance: Pareto distributions, dependence, and diversification," Papers 2208.08471, arXiv.org, revised Mar 2024.
    4. Eckert, Christian & Gatzert, Nadine, 2017. "Modeling operational risk incorporating reputation risk: An integrated analysis for financial firms," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 122-137.
    5. Rustam Ibragimov & Johan Walden, 2011. "Value at risk and efficiency under dependence and heavy-tailedness: models with common shocks," Annals of Finance, Springer, vol. 7(3), pages 285-318, August.
    6. Tong, Bin & Wu, Chongfeng & Xu, Weidong, 2012. "Risk concentration of aggregated dependent risks: The second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 139-149.
    7. Ibragimov, Rustam, 2014. "On the robustness of location estimators in models of firm growth under heavy-tailedness," Journal of Econometrics, Elsevier, vol. 181(1), pages 25-33.
    8. Ibragimov, Rustam & Prokhorov, Artem, 2016. "Heavy tails and copulas: Limits of diversification revisited," Economics Letters, Elsevier, vol. 149(C), pages 102-107.
    9. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    10. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    11. Steven Kou & Xianhua Peng, 2014. "On the Measurement of Economic Tail Risk," Papers 1401.4787, arXiv.org, revised Aug 2015.
    12. Dietz, Simon, 2011. "High impact, low probability?: an empirical analysis of risk in the economics of climate change," LSE Research Online Documents on Economics 38586, London School of Economics and Political Science, LSE Library.
    13. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    14. Dellink, Rob & Finus, Michael, 2012. "Uncertainty and climate treaties: Does ignorance pay?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 565-584.
    15. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    16. Horowitz, John & Lange, Andreas, 2014. "Cost–benefit analysis under uncertainty — A note on Weitzman's dismal theorem," Energy Economics, Elsevier, vol. 42(C), pages 201-203.
    17. Barrett, Scott, 2013. "Climate treaties and approaching catastrophes," Journal of Environmental Economics and Management, Elsevier, vol. 66(2), pages 235-250.
    18. Lint Barrage, 2019. "The Nobel Memorial Prize for William D. Nordhaus," Scandinavian Journal of Economics, Wiley Blackwell, vol. 121(3), pages 884-924, July.
    19. Stergios Athanassoglou & Anastasios Xepapadeas, 2011. "Pollution Control: When, and How, to be Precautious," Working Papers 2011.18, Fondazione Eni Enrico Mattei.
    20. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jrinsu:v:83:y:2016:i:3:p:735-776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ariaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.