IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Scaling Models for the Severity and Frequency of External Operational Loss Data

  • Hela Dahen
  • Georges Dionne

According to Basel II criteria, the use of external data is absolutely indispensable to the implementation of an advanced method for calculating operational capital. This article investigates how the severity and frequencies of external losses are scaled for integration with internal data. We set up an initial model designed to explain the loss severity. This model takes into account firm size, location, and business lines as well as risk types. It also shows how to calculate the internal loss equivalent to an external loss, which might occur in a given bank. OLS estimation results show that the above variables have significant power in explaining the loss amount. They are used to develop a normalization formula. A second model based on external data is developed to scale the frequency of losses over a given period. Two regression models are analyzed: the truncated Poisson model and the truncated negative binomial model. Variables estimating the size and geographical distribution of the banks' activities have been introduced as explanatory variables. The results show that the negative binomial distribution outperforms the Poisson distribution. The scaling is done by calculating the parameters of the selected distribution based on the estimated coefficients and the variables related to a given bank. Frequency of losses of more than $1 million are generated on a specific horizon.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirpee.org/fileadmin/documents/Cahiers_2007/CIRPEE07-02.pdf
Download Restriction: no

Paper provided by CIRPEE in its series Cahiers de recherche with number 0702.

as
in new window

Length:
Date of creation: 2007
Date of revision:
Handle: RePEc:lvl:lacicr:0702
Contact details of provider: Postal: CP 8888, succursale Centre-Ville, Montréal, QC H3C 3P8
Phone: (514) 987-8161
Web page: http://www.cirpee.org/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Georges Hübner & Jean-Philippe Peters, 2008. "Practical methods for measuring and managing operational risk in the financial sector: a clinical study," ULB Institutional Repository 2013/14158, ULB -- Universite Libre de Bruxelles.
  2. Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
  3. Dionne, G. & Gagne, R. & Gagnon, F. & Vanasse, C., 1994. "Debts, moral hazard and airline safety : an empirica evidence," CEPREMAP Working Papers (Couverture Orange) 9419, CEPREMAP.
  4. Frees, Edward W. & Valdez, Emiliano A., 2008. "Hierarchical Insurance Claims Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1457-1469.
  5. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-20, May.
  6. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
  7. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 31(3), pages 129-137.
  8. Allen, Linda & Bali, Turan G., 2007. "Cyclicality in catastrophic and operational risk measurements," Journal of Banking & Finance, Elsevier, vol. 31(4), pages 1191-1235, April.
  9. William H. Greene, 1994. "Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models," Working Papers 94-10, New York University, Leonard N. Stern School of Business, Department of Economics.
  10. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-38, July.
  11. Cummins, J. David & Lewis, Christopher M. & Wei, Ran, 2006. "The market value impact of operational loss events for US banks and insurers," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2605-2634, October.
  12. Cummins, J. David & Dionne, Georges & McDonald, James B. & Pritchett, B. Michael, 1990. "Applications of the GB2 family of distributions in modeling insurance loss processes," Insurance: Mathematics and Economics, Elsevier, vol. 9(4), pages 257-272, December.
  13. Georges Dionne & Hela Dahen, 2007. "What about Underevaluating Operational Value at Risk in the Banking Sector?," Cahiers de recherche 0723, CIRPEE.
  14. Gurmu, Shiferaw, 1991. "Tests for Detecting Overdispersion in the Positive Poisson Regression Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(2), pages 215-22, April.
  15. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
  16. J. Pinquet, 1997. "Experience rating through heterogeneous models," THEMA Working Papers 97-25, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  17. William H. Greene, 1997. "FIML Estimation of Sample Selection Models for Count Data," Working Papers 97-02, New York University, Leonard N. Stern School of Business, Department of Economics.
  18. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
  19. Dionne, G & Vanasse, C, 1992. "Automobile Insurance Ratemaking in the Presence of Asymmetrical Information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(2), pages 149-65, April-Jun.
  20. Cameron, A C & P. K. Trivedi & Frank Milne & J. Piggott, 1988. "A Microeconometric Model of the Demand for Health Care and Health Insurance in Australia," Review of Economic Studies, Wiley Blackwell, vol. 55(1), pages 85-106, January.
  21. Boyer, M. & Dionee, G. & Vanasse, C., 1990. "Econometric Models Of Accident Distributions," Cahiers de recherche 9001, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  22. Dionne, G. & Vanasse, C., 1988. "A Generalization Of Automobile Insurance Rating Models: The Negative Binomial Distribution With A Regression Component," Cahiers de recherche 8833, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  23. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-33, March.
  24. Gillet, Roland & Hübner, Georges & Plunus, Séverine, 2010. "Operational risk and reputation in the financial industry," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 224-235, January.
  25. Jarrow, Robert A., 2008. "Operational risk," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 870-879, May.
  26. Chernobai, Anna & Yildirim, Yildiray, 2008. "The dynamics of operational loss clustering," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2655-2666, December.
  27. Gurmu, Shiferaw & Trivedi, Pravin K., 1992. "Overdispersion tests for truncated Poisson regression models," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 347-370.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:lvl:lacicr:0702. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Johanne Perron)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.