IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v3y1996i3p303-325.html
   My bibliography  Save this article

Count data models for a credit scoring system

Author

Listed:
  • Dionne, Georges
  • Artis, Manuel
  • Guillen, Montserrat

Abstract

Credit scoring systems created for the evaluation of new applications are based on the available statistical information which is related to the behaviour of former clients with credit. Usually, financial institutions apply discriminant analysis techniques to create these systems but they lack of good properties due, for example, to the presence of non-normal variables. As an alternative, the future repayment behaviour is predicted by means of the expected number of unpaid instalments. The use of this latter variable suggests that appropriate models might be of interest, in which some covariant exogenous variables are included in order to specify the expected level of debt. At this point, prepayment is not explicitly considered. These models should be used as explanatory tools when evaluating the level of risk involved in personal credit transactions. Negative Binomial Distribution models are suitable when heterogeneity is taken into account. Some results related to prediction performance are shown for different model specifications in the case of data from a Spanish bank.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Dionne, Georges & Artis, Manuel & Guillen, Montserrat, 1996. "Count data models for a credit scoring system," Journal of Empirical Finance, Elsevier, vol. 3(3), pages 303-325, September.
  • Handle: RePEc:eee:empfin:v:3:y:1996:i:3:p:303-325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0927-5398(96)00004-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dionne, Georges & Doherty, Neil A, 1994. "Adverse Selection, Commitment, and Renegotiation: Extension to and Evidence from Insurance Markets," Journal of Political Economy, University of Chicago Press, vol. 102(2), pages 209-235, April.
    2. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    3. Boyd, John H & Smith, Bruce D, 1993. "The Equilibrium Allocation of Investment Capital in the Presence of Adverse Selection and Costly State Verification," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(3), pages 427-451, July.
    4. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    5. Dionne, Georges & Gagne, Robert & Gagnon, Francois & Vanasse, Charles, 1997. "Debt, moral hazard and airline safety An empirical evidence," Journal of Econometrics, Elsevier, vol. 79(2), pages 379-402, August.
    6. Steenackers, A. & Goovaerts, M. J., 1989. "A credit scoring model for personal loans," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 31-34, March.
    7. Fenn, Paul T, 1981. "Sickness Duration, Residual Disability, and Income Replacement: An Empirical Analysis," Economic Journal, Royal Economic Society, vol. 91(361), pages 158-173, March.
    8. Crocker, Keith J & Snow, Arthur, 1986. "The Efficiency Effects of Categorical Discrimination in the Insurance Industry," Journal of Political Economy, University of Chicago Press, vol. 94(2), pages 321-344, April.
    9. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    10. Stiglitz, Joseph E & Weiss, Andrew, 1981. "Credit Rationing in Markets with Imperfect Information," American Economic Review, American Economic Association, vol. 71(3), pages 393-410, June.
    11. Dwight M. Jaffee & Thomas Russell, 1976. "Imperfect Information, Uncertainty, and Credit Rationing," The Quarterly Journal of Economics, Oxford University Press, vol. 90(4), pages 651-666.
    12. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    13. Boyes, William J. & Hoffman, Dennis L. & Low, Stuart A., 1989. "An econometric analysis of the bank credit scoring problem," Journal of Econometrics, Elsevier, vol. 40(1), pages 3-14, January.
    14. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    15. Harris Milton & Townsend, Robert M, 1981. "Resource Allocation under Asymmetric Information," Econometrica, Econometric Society, vol. 49(1), pages 33-64, January.
    16. Grogger, J T & Carson, Richard T, 1991. "Models for Truncated Counts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(3), pages 225-238, July-Sept.
    17. Rose, Nancy L, 1990. "Profitability and Product Quality: Economic Determinants of Airline Safety Performance," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 944-964, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaldız Hanedar, Elmas & Broccardo, Eleonora & Bazzana, Flavio, 2014. "Collateral requirements of SMEs: The evidence from less-developed countries," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 106-121.
    2. Georges Dionne & Florence Giuliano & Pierre Picard, 2009. "Optimal Auditing with Scoring: Theory and Application to Insurance Fraud," Management Science, INFORMS, vol. 55(1), pages 58-70, January.
    3. Olfa N. Ghali, 2001. "An Empirical Evaluation of the Implementation of the Bonus-Malus System in the Tunisian Automobile Insurance Ratemaking," Working Papers 0135, Economic Research Forum, revised 11 2001.
    4. Marshall, Andrew & Tang, Leilei & Milne, Alistair, 2010. "Variable reduction, sample selection bias and bank retail credit scoring," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 501-512, June.
    5. Drivas, Kyriakos & Economidou, Claire & Tsionas, Efthymios G., 2014. "A Poisson Stochastic Frontier Model with Finite Mixture Structure," MPRA Paper 57485, University Library of Munich, Germany.
    6. Artis, Manuel & Ayuso, Mercedes & Guillen, Montserrat, 1999. "Modelling different types of automobile insurance fraud behaviour in the Spanish market," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 67-81, March.
    7. G. Dionne & F. Giuliano & P. Picard, 2002. "Optimal auditing for insurance fraud," THEMA Working Papers 2002-32, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    8. Santos Silva, J.M.C. & Murteira, J.M.R., 2009. "Estimation of default probabilities using incomplete contracts data," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 457-465, June.
    9. Michael J. Peel, 2014. "Addressing unobserved endogeneity bias in accounting studies: control and sensitivity methods by variable type," Accounting and Business Research, Taylor & Francis Journals, vol. 44(5), pages 545-571, October.
    10. Kasper Roszbach, 2004. "Bank Lending Policy, Credit Scoring, and the Survival of Loans," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 946-958, November.
    11. Woo, Mi-Ja & Sriram, T.N., 2007. "Robust estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4379-4392, May.
    12. Carling, Kenneth & Jacobson, Tor & Roszbach, Kasper, 2001. "Dormancy risk and expected profits of consumer loans," Journal of Banking & Finance, Elsevier, vol. 25(4), pages 717-739, April.
    13. Umashanger, T. & Sriram, T.N., 2009. "L2E estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4243-4254, October.
    14. repec:pal:jorsoc:v:56:y:2005:i:9:d:10.1057_palgrave.jors.2601922 is not listed on IDEAS
    15. Murray Smith, 2003. "On dependency in double-hurdle models," Statistical Papers, Springer, vol. 44(4), pages 581-595, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:3:y:1996:i:3:p:303-325. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.