IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/97-34.html

Modèles de comptage semi-paramétriques

Author

Listed:
  • Christian Gourieroux

    (Crest)

  • Alain Monfort

    (Crest)

Abstract

In this paper, we introduce a new class of models for count endogenous variables, i.e. the additive log-differentiated probability models (ALDP). This class is similar to the semi-parametric proportional hazard models used for duration data, and has some interesting implications in terms of costs or benefits. The asymptotic properties of the maximum likelihood estimators are studied and compared with the properties of the discriminant analysis estimators. We also explain why these models are suitable in the framework of endogenous sampling. Finally we discuss the introduction of heterogeneity. Dans cet article nous définissons une nouvelle classe de modèles pour les variables endogènes entières : les modèles additifs log-différenciés en probabilité (ALDP). Cette classe a des analogies avec les modèles semi-paramétriques de hasard proportionnel pour les modèles de durées et a des interprétations intéressantes en terme de coûts (ou de bénéfices). Les propriétés asymptotiques des estimateurs du maximum de vraisemblance pour ces modèles sont étudiées et comparées à celles des estimateurs de l’analyse discriminante. On propose également des estimateurs adaptés au cas d’échantillons stratifiés de façon exogène ou endogène. Enfin, le cas d’observations hétérogènes est discuté.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Christian Gourieroux & Alain Monfort, 1997. "Modèles de comptage semi-paramétriques," Working Papers 97-34, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:97-34
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/1997-34.pdf
    File Function: Crest working paper version
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:97-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.