IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v32y2008i6p1049-1061.html
   My bibliography  Save this article

Practical methods for measuring and managing operational risk in the financial sector: A clinical study

Author

Listed:
  • Chapelle, Ariane
  • Crama, Yves
  • Hübner, Georges
  • Peters, Jean-Philippe

Abstract

This paper analyzes the implications of the advanced measurement approach (AMA) for the assessment of operational risk. Through a clinical case study on a matrix of two selected business lines and two event types of a large financial institution, we develop a procedure that addresses the major issues faced by banks in the implementation of the AMA. For each cell, we calibrate two truncated distributions functions, one for "normal" losses and the other for the "extreme" losses. In addition, we propose a method to include external data in the framework. We then estimate the impact of operational risk management on bank profitability, through an adapted measure of RAROC. The results suggest that substantial savings can be achieved through active management techniques.

Suggested Citation

  • Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
  • Handle: RePEc:eee:jbfina:v:32:y:2008:i:6:p:1049-1061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(07)00292-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. François Longin, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    2. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    3. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    4. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    5. Frachot, Antoine & Roncalli, Thierry & Salomon, Eric, 2004. "The Correlation Problem in Operational Risk," MPRA Paper 38052, University Library of Munich, Germany.
    6. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    7. Hurlimann, Werner, 2004. "Fitting bivariate cumulative returns with copulas," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 355-372, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Mittnik & Sandra Paterlini & Tina Yener, 2011. "Operational–risk Dependencies and the Determination of Risk Capital," Center for Economic Research (RECent) 070, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    2. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    3. Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeLi, 2010. "Pricing catastrophe options with stochastic claim arrival intensity in claim time," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 24-32, January.
    4. repec:eee:insuma:v:75:y:2017:i:c:p:126-136 is not listed on IDEAS
    5. Dahen, Hela & Dionne, Georges, 2010. "Scaling models for the severity and frequency of external operational loss data," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1484-1496, July.
    6. Tyrone Lin & Chia-Chi Lee & Yu-Chuan Kuan, 2013. "The optimal operational risk capital requirement by applying the advanced measurement approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 85-101, January.
    7. Wang, Zongrun & Wang, Wuchao & Chen, Xiaohong & Jin, Yanbo & Zhou, Yanju, 2012. "Using BS-PSD-LDA approach to measure operational risk of Chinese commercial banks," Economic Modelling, Elsevier, vol. 29(6), pages 2095-2103.
    8. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    9. Guasti Lima Fabiano & Castro Junior Sant Clair de & Pimenta Júnior Tabajara & Gaio Luiz Eduardo, 2014. "Performance of the different RAROC models and their relation with the creation of economic value: A study of the largest banks operating in Brazil," Contaduría y Administración, Accounting and Management, vol. 59(4), pages 87-104, octubre-d.
    10. Feria-Domínguez, José Manuel & Jiménez-Rodríguez, Enrique & Sholarin, Ola, 2015. "Tackling the over-dispersion of operational risk: Implications on capital adequacy requirements," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 206-221.
    11. repec:rjr:romjef:v::y:2017:i:3:p:77-87 is not listed on IDEAS
    12. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    13. Elshahat, A. & Parhizgari, Ali & Hong, Liang, 2012. "The information content of the Banking Regulatory Agencies and the Depository Credit Intermediation Institutions," Journal of Economics and Business, Elsevier, vol. 64(1), pages 90-104.
    14. Andreas Groll & Julien Hambuckers & Thomas Kneib & Nikolaus Umlauf, 2018. "LASSO-Type Penalization in the Framework of Generalized Additive Models for Location, Scale and Shape," Working Papers 2018-16, Faculty of Economics and Statistics, University of Innsbruck.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:32:y:2008:i:6:p:1049-1061. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.