IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v31y2007i8p2405-2423.html
   My bibliography  Save this article

Selecting copulas for risk management

Author

Listed:
  • Kole, Erik
  • Koedijk, Kees
  • Verbeek, Marno

Abstract

Copulas offer financial risk managers a powerful tool to model the dependence between the different elements of a portfolio and are preferable to the traditional, correlation-based approach. In this paper we show the importance of selecting an accurate copula for risk management. We extend standard goodness-of-fit tests to copulas. Contrary to existing, indirect tests, these tests can be applied to any copula of any dimension and are based on a direct comparison of a given copula with observed data. For a portfolio consisting of stocks, bonds and real estate, these tests provide clear evidence in favour of the Student’s t copula, and reject both the correlation-based Gaussian copula and the extreme value-based Gumbel copula. In comparison with the Student’s t copula, we find that the Gaussian copula underestimates the probability of joint extreme downward movements, while the Gumbel copula overestimates this risk. Similarly we establish that the Gaussian copula is too optimistic on diversification benefits, while the Gumbel copula is too pessimistic. Moreover, these differences are significant.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
  • Handle: RePEc:eee:jbfina:v:31:y:2007:i:8:p:2405-2423
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(07)00036-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    2. P. Hartmann & S. Straetmans & C. G. de Vries, 2004. "Asset Market Linkages in Crisis Periods," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 313-326, February.
    3. Davide Meneguzzo & Walter Vecchiato, 2004. "Copula sensitivity in collateralized debt obligations and basket default swaps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(1), pages 37-70, January.
    4. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    5. Brooks, C. & Clare, A.D. & Dalle Molle, J.W. & Persand, G., 2005. "A comparison of extreme value theory approaches for determining value at risk," Journal of Empirical Finance, Elsevier, vol. 12(2), pages 339-352, March.
    6. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    7. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    8. Junker, Markus & Szimayer, Alex & Wagner, Niklas, 2006. "Nonlinear term structure dependence: Copula functions, empirics, and risk implications," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1171-1199, April.
    9. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, Oxford University Press, vol. 110(1), pages 73-92.
    10. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    11. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    12. Newey, Whitney K., 1984. "A method of moments interpretation of sequential estimators," Economics Letters, Elsevier, vol. 14(2-3), pages 201-206.
    13. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    14. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    15. Amos Tversky & Daniel Kahneman, 1991. "Loss Aversion in Riskless Choice: A Reference-Dependent Model," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 1039-1061.
    16. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
    17. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269, July.
    18. Rachel Campbell & Catherine S. Forbes & Kees Koedijk & Paul Kofman, 2003. "Diversification Meltdown or the Impact of Fat tails on Conditional Correlation?," Monash Econometrics and Business Statistics Working Papers 18/03, Monash University, Department of Econometrics and Business Statistics.
    19. Campbell, Rachel & Koedijk, Kees & Kofman, Paul, 2002. "Increased Correlation in Bear markets: A Downside Risk Perspective," CEPR Discussion Papers 3172, C.E.P.R. Discussion Papers.
    20. William B. English & Mico Loretan, 2000. "Evaluating \"correlation breakdowns\" during periods of market volatility," International Finance Discussion Papers 658, Board of Governors of the Federal Reserve System (U.S.).
    21. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    22. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    23. Giesecke, Kay, 2004. "Correlated default with incomplete information," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1521-1545, July.
    24. Yanqin Fan & Xiaohong Chen & Andrew Patton, 2004. "(IAM Series No 003) Simple Tests for Models of Dependence Between Multiple Financial Time Series, with Applications to U.S. Equity Returns and Exchange Rates," FMG Discussion Papers dp483, Financial Markets Group.
    25. Fermanian, Jean-David, 2005. "Goodness-of-fit tests for copulas," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 119-152, July.
    26. Jansen, Dennis W. & Koedijk, Kees G. & de Vries, Casper G., 2000. "Portfolio selection with limited downside risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 247-269, November.
    27. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    28. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kole, H.J.W.G. & Koedijk, C.G. & Verbeek, M.J.C.M., 2003. "Stress Testing with Student's t Dependence," ERIM Report Series Research in Management ERS-2003-056-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    4. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    5. S. T. M. Straetmans & W. F. C. Verschoor & C. C. P. Wolff, 2008. "Extreme US stock market fluctuations in the wake of 9|11," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 17-42.
    6. Geert Bekaert & Campbell R. Harvey & Angela Ng, 2005. "Market Integration and Contagion," The Journal of Business, University of Chicago Press, vol. 78(1), pages 39-70, January.
    7. Cotter, John, 2004. "Modelling extreme financial returns of global equity markets," MPRA Paper 3532, University Library of Munich, Germany.
    8. Dias, Alexandra, 2014. "Semiparametric estimation of multi-asset portfolio tail risk," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 398-408.
    9. Boubaker, Heni & Sghaier, Nadia, 2013. "Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 361-377.
    10. Huang, Huichou & MacDonald, Ronald & Zhao, Yang, 2012. "Global Currency Misalignments, Crash Sensitivity, and Downside Insurance Costs," MPRA Paper 53745, University Library of Munich, Germany, revised 18 Nov 2013.
    11. Jian Zhou & Yanmin Gao, 2012. "Tail Dependence in International Real Estate Securities Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 45(1), pages 128-151, June.
    12. Ozer-Imer, Itir & Ozkan, Ibrahim, 2014. "An empirical analysis of currency volatilities during the recent global financial crisis," Economic Modelling, Elsevier, vol. 43(C), pages 394-406.
    13. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    14. Straetmans, Stefan & Chaudhry, Sajid M., 2015. "Tail risk and systemic risk of US and Eurozone financial institutions in the wake of the global financial crisis," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 191-223.
    15. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    16. Martin Hoesli & Kustrim Reka, 2013. "Volatility Spillovers, Comovements and Contagion in Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 47(1), pages 1-35, July.
    17. de Carvalho, Pablo Jose Campos & Gupta, Aparna, 2018. "A network approach to unravel asset price comovement using minimal dependence structure," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 119-132.
    18. Sorge, Marco & Virolainen, Kimmo, 2006. "A comparative analysis of macro stress-testing methodologies with application to Finland," Journal of Financial Stability, Elsevier, vol. 2(2), pages 113-151, June.
    19. John Knight & Colin Lizieri & Stephen Satchell, 2005. "Diversification when It Hurts? The Joint Distributions of Real Estate and Equity Markets1," Journal of Property Research, Taylor & Francis Journals, vol. 22(4), pages 309-323, December.
    20. Mensah, Jones Odei & Premaratne, Gamini, 2014. "Dependence patterns among Banking Sectors in Asia: A Copula Approach," MPRA Paper 60119, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:31:y:2007:i:8:p:2405-2423. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.