IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/19980017.html
   My bibliography  Save this paper

Value-at-Risk and Extreme Returns

Author

Listed:
  • Jón Daníelsson

    (London School of Economics, University of Iceland)

  • Casper G. de Vries

    (Erasmus University Rotterdam)

Abstract

Accurate prediction of the frequency of extreme events is of primary importance in many financialapplications such as Value-at-Risk (VaR) analysis. We propose a semi-parametric method for VaRevaluation. The largest risks are modelled parametrically, while smaller risks are captured by the non-parametric empirical distribution function. The semi-parametric method is compared with historicalsimulation and the J.P. Morgan RiskMetrics technique on a portfolio of stock returns. For predictions oflow probability worst outcomes, RiskMetrics analysis underpredicts the VaR while historical simulationoverpredicts the VaR. However, the estimates obtained from applying the semi-parametric method aremore accurate in the VaR prediction. In addition, an option is used in the portfolio to lower downsiderisk. Finally, it is argued that current regulatory environment provides incentives to use the lowestquality VaR method available.

Suggested Citation

  • Jón Daníelsson & Casper G. de Vries, 1998. "Value-at-Risk and Extreme Returns," Tinbergen Institute Discussion Papers 98-017/2, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:19980017
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/98017.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. de Haan, Laurens & Resnick, Sidney I. & Rootzén, Holger & de Vries, Casper G., 1989. "Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 213-224, August.
    2. J. S. Butler & Barry Schachter, 1996. "Improving Value-At-Risk Estimates By Combining Kernel Estimation With Historical Simulation," Finance 9605001, University Library of Munich, Germany.
    3. J. S. Butler & Barry Schachter, 1996. "Improving value-at-risk estimates by combining kernel estimation," Proceedings 513, Federal Reserve Bank of Chicago.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiongwei Ju & Neil D. Pearson, 1998. "Using Value-at-Risk to Control Risk Taking: How Wrong Can you Be?," Finance 9810002, University Library of Munich, Germany.
    2. Jose A. Lopez, 1996. "Regulatory Evaluation of Value-at-Risk Models," Center for Financial Institutions Working Papers 96-51, Wharton School Center for Financial Institutions, University of Pennsylvania.
    3. Luis Fernando Melo Velandia & Oscar Reinaldo Becerra Camargo, 2005. "Medidas De Riesgo, Caracteristicas Y T�Cnicas De Medici�N: Una Aplicaci�N Del Var Y El Es A La Tasa Interbancaria De Colombia," Borradores de Economia 3198, Banco de la Republica.
    4. Luis Fernando Melo Velandia & Oscar reinaldo Becerra Camargo, 2005. "Medidas de Riesgo, Características y Técnicas de Medición: Una Aplicación del VAR y el ES a la Tasa Interbancaria de Colombia," Borradores de Economia 343, Banco de la Republica de Colombia.
    5. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    6. Aoki, Masanao, 2002. "Open models of share markets with two dominant types of participants," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 199-216, October.
    7. Sebastian Mentemeier & Olivier Wintenberger, 2022. "Asymptotic independence ex machina: Extreme value theory for the diagonal SRE model," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 750-780, September.
    8. Danielsson, Jon & Jorgensen, Bjorn N. & Sarma, Mandira & de Vries, Casper G., 2006. "Comparing downside risk measures for heavy tailed distributions," Economics Letters, Elsevier, vol. 92(2), pages 202-208, August.
    9. Phornchanok Cumperayot & Casper G. de Vries, 2006. "Large Swings in Currencies driven by Fundamentals," Tinbergen Institute Discussion Papers 06-086/2, Tinbergen Institute.
    10. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    11. Collamore, Jeffrey F. & Vidyashankar, Anand N., 2013. "Tail estimates for stochastic fixed point equations via nonlinear renewal theory," Stochastic Processes and their Applications, Elsevier, vol. 123(9), pages 3378-3429.
    12. Gomes, M. Ivette & Hall, Andreia & Miranda, M. Cristina, 2008. "Subsampling techniques and the Jackknife methodology in the estimation of the extremal index," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2022-2041, January.
    13. Casper G. de Vries & Gennady Samorodnitsky & Bjørn N. Jorgensen & Sarma Mandira & Jon Danielsson, 2005. "Subadditivity Re–Examined: the Case for Value-at-Risk," FMG Discussion Papers dp549, Financial Markets Group.
    14. Jondeau, Eric & Rockinger, Michael, 2003. "Testing for differences in the tails of stock-market returns," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 559-581, December.
    15. S. Caserta & J. DanÃÂÃÂelsson & C. G. De Vries, 1998. "Abnormal returns, risk, and options in large data sets," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 52(3), pages 324-335, November.
    16. Gimeno, Ricardo & Gonzalez, Clara I., 2012. "An automatic procedure for the estimation of the tail index," MPRA Paper 37023, University Library of Munich, Germany.
    17. Danielsson, Jon & Ergun, Lerby M. & Haan, Laurens de & Vries, Casper G. de, 2016. "Tail index estimation: quantile driven threshold selection," LSE Research Online Documents on Economics 66193, London School of Economics and Political Science, LSE Library.
    18. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    19. Kevin Dowd & John Cotter, 2011. "Intra-Day Seasonality in Foreign Market Transactions," Working Papers 200746, Geary Institute, University College Dublin.
    20. François, LONGIN & Bruno, SOLNIK, 1998. "Correlation Structure of International Equity Markets During Extremely Volatile Periods," HEC Research Papers Series 646, HEC Paris.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G00 - Financial Economics - - General - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:19980017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.