IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/119166.html
   My bibliography  Save this paper

Value-at-risk and extreme returns

Author

Listed:
  • Danielsson, Jon
  • Vries, Casper

Abstract

Accurate prediction of extreme events are of primary importance in many financial applications. The properties of historical simulation and RiskMetrics techniques for computing Value-at-Risk (VaR) are compared with a method which involves modelling the tails of financial returns explicitly with a tail estimator. The methods are compared using a sample of U. S. stock returns. For predictions of low probability worst outcomes, RiskMetrics type analysis underpredicts while historical simulation overpredicts. However, the estimates obtained from applying the tail estimator are more accurate in the VaR prediction. This implies that capital requirements can be lower by doing VaR with the tail estimator.

Suggested Citation

  • Danielsson, Jon & Vries, Casper, 1997. "Value-at-risk and extreme returns," LSE Research Online Documents on Economics 119166, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:119166
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/119166/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. de Haan, Laurens & Resnick, Sidney I. & Rootzén, Holger & de Vries, Casper G., 1989. "Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 213-224, August.
    2. J. S. Butler & Barry Schachter, 1996. "Improving Value-At-Risk Estimates By Combining Kernel Estimation With Historical Simulation," Finance 9605001, University Library of Munich, Germany.
    3. J. S. Butler & Barry Schachter, 1996. "Improving value-at-risk estimates by combining kernel estimation," Proceedings 513, Federal Reserve Bank of Chicago.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose A. Lopez, 1996. "Regulatory Evaluation of Value-at-Risk Models," Center for Financial Institutions Working Papers 96-51, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Luis Fernando Melo Velandia & Oscar Reinaldo Becerra Camargo, 2005. "Medidas De Riesgo, Caracteristicas Y T�Cnicas De Medici�N: Una Aplicaci�N Del Var Y El Es A La Tasa Interbancaria De Colombia," Borradores de Economia 3198, Banco de la Republica.
    3. Xiongwei Ju & Neil D. Pearson, 1998. "Using Value-at-Risk to Control Risk Taking: How Wrong Can you Be?," Finance 9810002, University Library of Munich, Germany.
    4. Luis Fernando Melo Velandia & Oscar reinaldo Becerra Camargo, 2005. "Medidas de Riesgo, Características y Técnicas de Medición: Una Aplicación del VAR y el ES a la Tasa Interbancaria de Colombia," Borradores de Economia 343, Banco de la Republica de Colombia.
    5. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    6. Aoki, Masanao, 2002. "Open models of share markets with two dominant types of participants," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 199-216, October.
    7. Danielsson, Jon & Jorgensen, Bjorn N. & Sarma, Mandira & de Vries, Casper G., 2006. "Comparing downside risk measures for heavy tailed distributions," Economics Letters, Elsevier, vol. 92(2), pages 202-208, August.
    8. Phornchanok Cumperayot & Casper G. de Vries, 2006. "Large Swings in Currencies driven by Fundamentals," Tinbergen Institute Discussion Papers 06-086/2, Tinbergen Institute.
    9. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    10. Collamore, Jeffrey F. & Vidyashankar, Anand N., 2013. "Tail estimates for stochastic fixed point equations via nonlinear renewal theory," Stochastic Processes and their Applications, Elsevier, vol. 123(9), pages 3378-3429.
    11. Gomes, M. Ivette & Hall, Andreia & Miranda, M. Cristina, 2008. "Subsampling techniques and the Jackknife methodology in the estimation of the extremal index," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2022-2041, January.
    12. S. Caserta & J. DanÃÂÃÂelsson & C. G. De Vries, 1998. "Abnormal returns, risk, and options in large data sets," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 52(3), pages 324-335, November.
    13. Danielsson, Jon & Ergun, Lerby M. & Haan, Laurens de & Vries, Casper G. de, 2016. "Tail index estimation: quantile driven threshold selection," LSE Research Online Documents on Economics 66193, London School of Economics and Political Science, LSE Library.
    14. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    15. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    16. Groenendijk, Patrick A. & Lucas, Andre & de Vries, Casper G., 1995. "A note on the relationship between GARCH and symmetric stable processes," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 253-264, September.
    17. de Vries, Casper G., 1991. "On the relation between GARCH and stable processes," Journal of Econometrics, Elsevier, vol. 48(3), pages 313-324, June.
    18. Chaudhuri, Kausik & Sen, Rituparna & Tan, Zheng, 2018. "Testing extreme dependence in financial time series," Economic Modelling, Elsevier, vol. 73(C), pages 378-394.
    19. Cotter, John & Dowd, Kevin, 2010. "Intra-day seasonality in foreign exchange market transactions," International Review of Economics & Finance, Elsevier, vol. 19(2), pages 287-294, April.
    20. De Vries, C.G., 2005. "The simple economics of bank fragility," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 803-825, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G00 - Financial Economics - - General - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:119166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.