IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Varying the VaR for Unconditional and Conditional Environments

  • John Cotter

    (University College Dublin)

Accurate forecasting of risk is the key to successful risk management techniques. Using the largest stock index futures from twelve European bourses, this paper presents VaR measures based on their unconditional and conditional distributions for single and multi-period settings. These measures underpinned by extreme value theory are statistically robust explicitly allowing for fat-tailed densities. Conditional tail estimates are obtained by adjusting the unconditional extreme value procedure with GARCH filtered returns. The conditional modelling results in iid returns allowing for the use of a simple and efficient multi-period extreme value scaling law. The paper examines the properties of these distinct conditional and unconditional trading models. The paper finds that the biases inherent in unconditional single and multi-period estimates assuming normality extend to the conditional setting.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: First version, 2004
Download Restriction: no

Paper provided by Geary Institute, University College Dublin in its series Working Papers with number 200419.

in new window

Length: 32 pages
Date of creation: 07 2011
Date of revision:
Handle: RePEc:ucd:wpaper:200419
Contact details of provider: Postal: Arts Annexe, Belfield, Dublin 4
Phone: +353 1 7164615
Fax: +353 1 7161108
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ghose, Devajyoti & Kroner, Kenneth F., 1995. "The relationship between GARCH and symmetric stable processes: Finding the source of fat tails in financial data," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 225-251, September.
  2. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
  3. Francis X. Diebold & Til Schuermann & John D. Stroughair, 1998. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Center for Financial Institutions Working Papers 98-10, Wharton School Center for Financial Institutions, University of Pennsylvania.
  4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-060, New York University, Leonard N. Stern School of Business-.
  5. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
  6. repec:att:wimass:9208 is not listed on IDEAS
  7. Jon DANIELSSON & Casper G. DE VRIES, 2000. "Value-at-Risk and Extreme Returns," Annales d'Economie et de Statistique, ENSAE, issue 60, pages 239-270.
  8. Cotter, John, 2000. "Margin Exceedences for European Stock Index Futures using Extreme Value Theory," MPRA Paper 3534, University Library of Munich, Germany, revised 2001.
  9. Giovanni Barone-Adesi & Kostas Giannopoulos & Les Vosper, 2002. "Backtesting Derivative Portfolios with Filtered Historical Simulation (FHS)," European Financial Management, European Financial Management Association, vol. 8(1), pages 31-58.
  10. Peter F. Christoffersen & Francis X. Diebold, 1998. "How Relevant is Volatility Forecasting for Financial Risk Management?," NBER Working Papers 6844, National Bureau of Economic Research, Inc.
  11. Jansen, Dennis W. & Koedijk, Kees G. & de Vries, Casper G., 2000. "Portfolio selection with limited downside risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 247-269, November.
  12. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
  13. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
  14. Pozo, Susan & Amuedo-Dorantes, Catalina, 2003. "Statistical distributions and the identification of currency crises," Journal of International Money and Finance, Elsevier, vol. 22(4), pages 591-609, August.
  15. Phillips, Peter C B & McFarland, James W & McMahon, Patrick C, 1996. "Robust Tests of Forward Exchange Market Efficiency with Empirical Evidence from the 1920s," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 1-22, Jan.-Feb..
  16. Pownall, Rachel A. J. & Koedijk, Kees G., 1999. "Capturing downside risk in financial markets: the case of the Asian Crisis," Journal of International Money and Finance, Elsevier, vol. 18(6), pages 853-870, December.
  17. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
  18. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  19. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-16, April.
  20. Phillip Kearns & Adrian Pagan, 1997. "Estimating The Density Tail Index For Financial Time Series," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 171-175, May.
  21. de Haan, Laurens & Resnick, Sidney I. & Rootzén, Holger & de Vries, Casper G., 1989. "Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 213-224, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ucd:wpaper:200419. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Geary Tech)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.