IDEAS home Printed from
   My bibliography  Save this paper

Using a bootstrap method to choose the sample fraction in tail index estimation


  • Daníelsson, J.
  • de Haan, L.F.M.
  • Peng, L.
  • de Vries, C.G.


Tail index estimation depends for its accuracy on a precise choice of the sample fraction, i.e. the number of extreme order statistics on which the estimation is based. A complete solution to the sample fraction selection is given by means of a two step subsample bootstrap method. This method adaptively determines the sample fraction that minimizes the asymptotic mean squared error. Unlike previous methods, prior knowledge of the second order parameter is not required. In addition, we are able to dispense with the need for a prior estimate of the tail index which already converges roughly at the optimal rate. The only arbitrary choice of parameters is the number of Monte Carlo replications.

Suggested Citation

  • Daníelsson, J. & de Haan, L.F.M. & Peng, L. & de Vries, C.G., 2000. "Using a bootstrap method to choose the sample fraction in tail index estimation," Econometric Institute Research Papers EI 2000-19/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1652

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Dekkers, A. L. M. & Dehaan, L., 1993. "Optimal Choice of Sample Fraction in Extreme-Value Estimation," Journal of Multivariate Analysis, Elsevier, vol. 47(2), pages 173-195, November.
    2. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    3. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    4. de Haan, L. & Pereira, T. Themido, 1999. "Estimating the index of a stable distribution," Statistics & Probability Letters, Elsevier, vol. 41(1), pages 39-55, January.
    5. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    6. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1652. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.