IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v12y2005i1p165-185.html
   My bibliography  Save this article

Measuring tail thickness under GARCH and an application to extreme exchange rate changes

Author

Listed:
  • Wagner, Niklas
  • Marsh, Terry A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
  • Handle: RePEc:eee:empfin:v:12:y:2005:i:1:p:165-185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927-5398(04)00028-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis X. Diebold & Til Schuermann & John D. Stroughair, 1998. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Center for Financial Institutions Working Papers 98-10, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    3. Wagner, Niklas & Marsh, Terry, 2000. "On Adaptive Tail Index Estimation for Financial Return Models," Research Program in Finance, Working Paper Series qt2651k8f5, Research Program in Finance, Institute for Business and Economic Research, UC Berkeley.
    4. Niklas Wagner and Terry Marsh., 2000. "On Adaptive Tail Index Estimation for Financial Return Models," Research Program in Finance Working Papers RPF-295, University of California at Berkeley.
    5. ROCKINGER, Michael & JONDEAU, Eric, 1999. "The Tail Behavior of Stock Returns: Emerging versus Mature Markets," Les Cahiers de Recherche 668, HEC Paris.
    6. Huisman, R. & Koedijik, K.G. & Pownall, R.A.J., 1998. "VaR-x: Fat Tails in Financial Risk Management," Papers 98-54, Southern California - School of Business Administration.
    7. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    8. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    9. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    10. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    11. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    12. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    13. Phillip Kearns & Adrian Pagan, 1997. "Estimating The Density Tail Index For Financial Time Series," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 171-175, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Karimi & Marcel Voia, 2015. "Identifying extreme values of exchange market pressure," Empirical Economics, Springer, vol. 48(3), pages 1055-1078, May.
    2. Aboura, Sofiane & Wagner, Niklas, 2016. "Extreme asymmetric volatility: Stress and aggregate asset prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 47-59.
    3. Michal Brzezinski, 2016. "Robust estimation of the Pareto tail index: a Monte Carlo analysis," Empirical Economics, Springer, vol. 51(1), pages 1-30, August.
    4. Iglesias, Emma M., 2015. "Value at Risk of the main stock market indexes in the European Union (2000–2012)," Journal of Policy Modeling, Elsevier, vol. 37(1), pages 1-13.
    5. Horváth, Roman & Šopov, Boril, 2016. "GARCH models, tail indexes and error distributions: An empirical investigation," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 1-15.
    6. Iglesias, Emma M., 2015. "Value at Risk and expected shortfall of firms in the main European Union stock market indexes: A detailed analysis by economic sectors and geographical situation," Economic Modelling, Elsevier, vol. 50(C), pages 1-8.
    7. Alex Yi-Hou Huang & Tsung-Wei Tseng, 2009. "Forecast of value at risk for equity indices: an analysis from developed and emerging markets," Journal of Risk Finance, Emerald Group Publishing, vol. 10(4), pages 393-409, August.
    8. Riedel, Christoph & Wagner, Niklas, 2015. "Is risk higher during non-trading periods? The risk trade-off for intraday versus overnight market returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 53-64.
    9. Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    10. Vêlayoudom Marimoutou & Bechir Raggad & Abdelwahed Trabelsi, 2006. "Extreme Value Theory and Value at Risk : Application to Oil Market," Working Papers halshs-00410746, HAL.
    11. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:12:y:2005:i:1:p:165-185. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.