IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/we094726.html
   My bibliography  Save this paper

Estimation of tail thickness parameters from GJR-GARCH models

Author

Listed:
  • Iglesias, Emma M.
  • Linton, Oliver

Abstract

We propose a method of estimating the Pareto tail thickness parameter of the unconditional distribution of a financial time series by exploiting the implications of a GJR-GARCH volatility model. The method is based on some recent work on the extremes of GARCH-type processes and extends the method proposed by Berkes, Horváth and Kokoszka (2003). We show that the estimator of tail thickness is consistent and converges at rate √T to a normal distribution (where T is the sample size), provided the model for conditional variance is correctly specified as a GJR-GARCH. This is much faster than the convergence rate of the Hill estimator, since that procedure only uses a vanishing fraction of the sample. We also develop new specification tests based on this method and propose new alternative estimates of unconditional value at risk. We show in Monte Carlo simulations the advantages of our procedure in finite samples; and finally an application concludes the paper

Suggested Citation

  • Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:we094726
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/4919/09-47-26-1.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR-GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    2. Groenendijk, Patrick A. & Lucas, Andre & de Vries, Casper G., 1995. "A note on the relationship between GARCH and symmetric stable processes," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 253-264, September.
    3. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
    4. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, pages 211-248.
    5. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    6. Jensen, S ren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1203-1226, December.
    7. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    8. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
    9. Andrews, Donald W K, 1987. "Consistency in Nonlinear Econometric Models: A Generic Uniform Law of Large Numbers [On Unification of the Asymptotic Theory of Nonlinear Econometric Models]," Econometrica, Econometric Society, vol. 55(6), pages 1465-1471, November.
    10. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    11. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    12. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(04), pages 539-569, August.
    13. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    14. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
    15. Phillip Kearns & Adrian Pagan, 1997. "Estimating The Density Tail Index For Financial Time Series," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 171-175, May.
    16. Fan, Yanqin & Ullah, Aman, 1999. "Asymptotic Normality of a Combined Regression Estimator," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 191-240, November.
    17. Hill, Jonathan B., 2010. "On Tail Index Estimation For Dependent, Heterogeneous Data," Econometric Theory, Cambridge University Press, vol. 26(05), pages 1398-1436, October.
    18. Hols, Martien C A B & de Vries, Casper G, 1991. "The Limiting Distribution of Extremal Exchange Rate Returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(3), pages 287-302, July-Sept.
    19. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    20. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    21. Joris Pinkse & Margaret E. Slade & Craig Brett, 2002. "Spatial Price Competition: A Semiparametric Approach," Econometrica, Econometric Society, vol. 70(3), pages 1111-1153, May.
    22. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    23. Slade, Margaret E, 1986. "Exogeneity Tests of Market Boundaries Applied to Petroleum Products," Journal of Industrial Economics, Wiley Blackwell, vol. 34(3), pages 291-303, March.
    24. Niklas Wagner & Terry A. Marsh, 2004. "Measuring Tail Thickness under GARCH and an Application to Extreme Exchange Rate Changes," Econometrics 0401008, EconWPA.
    25. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
    26. Markowitz, Harry M, 1991. " Foundations of Portfolio Theory," Journal of Finance, American Finance Association, vol. 46(2), pages 469-477, June.
    27. Theis Lange & Anders Rahbek & Søren Tolver Jensen, 2011. "Estimation and Asymptotic Inference in the AR-ARCH Model," Econometric Reviews, Taylor & Francis Journals, vol. 30(2), pages 129-153.
    28. Berkes, Istv n & Horv th, Lajos & Kokoszka, Piotr, 2003. "Estimation Of The Maximal Moment Exponent Of A Garch(1,1) Sequence," Econometric Theory, Cambridge University Press, vol. 19(04), pages 565-586, August.
    29. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iglesias, Emma M., 2015. "Value at Risk of the main stock market indexes in the European Union (2000–2012)," Journal of Policy Modeling, Elsevier, vol. 37(1), pages 1-13.
    2. Stavros Degiannakis & Christos Floros & Alexandra Livada, 2012. "Evaluating value-at-risk models before and after the financial crisis of 2008: International evidence," Managerial Finance, Emerald Group Publishing, vol. 38(3), pages 436-452, March.
    3. Stavros Degiannakis & Christos Floros & Alexandra Livada, 2012. "Evaluating value-at-risk models before and after the financial crisis of 2008: International evidence," Managerial Finance, Emerald Group Publishing, vol. 38(4), pages 436-452, March.
    4. Beran, Jan & Schell, Dieter, 2012. "On robust tail index estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3430-3443.
    5. Iglesias, Emma M., 2015. "Value at Risk and expected shortfall of firms in the main European Union stock market indexes: A detailed analysis by economic sectors and geographical situation," Economic Modelling, Elsevier, vol. 50(C), pages 1-8.

    More about this item

    Keywords

    Pareto tail thickness parameter;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:we094726. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://www.eco.uc3m.es/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.